-
1
-
-
17444395926
-
Automatic recognition of sleep spindles in EEG via radial basis support vector machine based on a modified feature selection algorithm
-
Acir N., and Guzelis C. Automatic recognition of sleep spindles in EEG via radial basis support vector machine based on a modified feature selection algorithm. Neural Comput. Appl. 14 (2005) 56-65
-
(2005)
Neural Comput. Appl.
, vol.14
, pp. 56-65
-
-
Acir, N.1
Guzelis, C.2
-
2
-
-
8344257309
-
Selecting salient features for classification based on neural network committees
-
Bacauskiene M., and Verikas A. Selecting salient features for classification based on neural network committees. Pattern Recognition Lett. 25 16 (2004) 1879-1891
-
(2004)
Pattern Recognition Lett.
, vol.25
, Issue.16
, pp. 1879-1891
-
-
Bacauskiene, M.1
Verikas, A.2
-
3
-
-
0342546478
-
Feature screening using signal-to-noise ratios
-
Bauer K.W., Alsing S.G., and Greene K.A. Feature screening using signal-to-noise ratios. Neurocomputing 31 (2000) 29-44
-
(2000)
Neurocomputing
, vol.31
, pp. 29-44
-
-
Bauer, K.W.1
Alsing, S.G.2
Greene, K.A.3
-
4
-
-
0029256585
-
Determining input features for multilayer perceptrons
-
Belue L.M., and Bauer K.W. Determining input features for multilayer perceptrons. Neurocomputing 7 (1995) 111-121
-
(1995)
Neurocomputing
, vol.7
, pp. 111-121
-
-
Belue, L.M.1
Bauer, K.W.2
-
5
-
-
1542365112
-
Dimensionality reduction via sparse support vector machines
-
Bi J., Bennett K.P., Embrechts M., Breneman C.M., and Song M. Dimensionality reduction via sparse support vector machines. J. Mach. Learning Res. 3 (2003) 1229-1243
-
(2003)
J. Mach. Learning Res.
, vol.3
, pp. 1229-1243
-
-
Bi, J.1
Bennett, K.P.2
Embrechts, M.3
Breneman, C.M.4
Song, M.5
-
6
-
-
0003802343
-
-
Chapman & Hall, Amsterdam
-
Breiman L., Friedman J.H., Olshen R.A., and Stone C.J. Classification and Regression Trees (1993), Chapman & Hall, Amsterdam
-
(1993)
Classification and Regression Trees
-
-
Breiman, L.1
Friedman, J.H.2
Olshen, R.A.3
Stone, C.J.4
-
7
-
-
6344233728
-
Feature ranking and best feature subset using mutual information
-
Cang S., and Partridge D. Feature ranking and best feature subset using mutual information. Neural Comput. Appl. 13 (2004) 175-184
-
(2004)
Neural Comput. Appl.
, vol.13
, pp. 175-184
-
-
Cang, S.1
Partridge, D.2
-
8
-
-
0038329332
-
An improved branch and bound algorithm for feature selection
-
Chen X.W. An improved branch and bound algorithm for feature selection. Pattern Recognition Lett. 24 12 (2003) 1925-1933
-
(2003)
Pattern Recognition Lett.
, vol.24
, Issue.12
, pp. 1925-1933
-
-
Chen, X.W.1
-
9
-
-
0031245693
-
Feature analysis: neural network and fuzzy set theoretic approaches
-
De R.K., Pal N.R., and Pal S.K. Feature analysis: neural network and fuzzy set theoretic approaches. Pattern Recognition 30 10 (1997) 1579-1590
-
(1997)
Pattern Recognition
, vol.30
, Issue.10
, pp. 1579-1590
-
-
De, R.K.1
Pal, N.R.2
Pal, S.K.3
-
10
-
-
0020184062
-
Towards fuzzy differential calculus, Part 2: differentiation
-
Dubois D., and Prade H. Towards fuzzy differential calculus, Part 2: differentiation. Fuzzy Sets and Systems 8 3 (1982) 225-233
-
(1982)
Fuzzy Sets and Systems
, vol.8
, Issue.3
, pp. 225-233
-
-
Dubois, D.1
Prade, H.2
-
11
-
-
0023548442
-
The mean-value of a fuzzy number
-
Dubois D., and Prade H. The mean-value of a fuzzy number. Fuzzy Sets and Systems 24 3 (1987) 279-300
-
(1987)
Fuzzy Sets and Systems
, vol.24
, Issue.3
, pp. 279-300
-
-
Dubois, D.1
Prade, H.2
-
13
-
-
0042850508
-
Image representations and feature selection for multimedia database search
-
Evgeniou T., Pontil M., Papageorgiou C., and Poggio T. Image representations and feature selection for multimedia database search. IEEE Trans. Knowledge Data Eng. 15 4 (2003) 911-920
-
(2003)
IEEE Trans. Knowledge Data Eng.
, vol.15
, Issue.4
, pp. 911-920
-
-
Evgeniou, T.1
Pontil, M.2
Papageorgiou, C.3
Poggio, T.4
-
14
-
-
0030230803
-
Ranking and defuzzification methods based on area compensation
-
Fortemps P., and Roubens M. Ranking and defuzzification methods based on area compensation. Fuzzy Sets and Systems 82 3 (1996) 319-330
-
(1996)
Fuzzy Sets and Systems
, vol.82
, Issue.3
, pp. 319-330
-
-
Fortemps, P.1
Roubens, M.2
-
15
-
-
0036161259
-
Gene selection for cancer classification using support vector machines
-
Guyon I., Weston J., Barnhill S., and Vapnik V. Gene selection for cancer classification using support vector machines. Mach. Learning 46 (2002) 389-422
-
(2002)
Mach. Learning
, vol.46
, pp. 389-422
-
-
Guyon, I.1
Weston, J.2
Barnhill, S.3
Vapnik, V.4
-
16
-
-
0033640901
-
Comparison of algorithms that select features for pattern classifiers
-
Kudo M., and Sklansky J. Comparison of algorithms that select features for pattern classifiers. Pattern Recognition 33 1 (2000) 25-41
-
(2000)
Pattern Recognition
, vol.33
, Issue.1
, pp. 25-41
-
-
Kudo, M.1
Sklansky, J.2
-
17
-
-
33646099818
-
FS-SFS: a novel feature selection method for support vector machines
-
Liu Y., and Zheng Y.F. FS-SFS: a novel feature selection method for support vector machines. Pattern Recognition 39 7 (2006) 1333-1345
-
(2006)
Pattern Recognition
, vol.39
, Issue.7
, pp. 1333-1345
-
-
Liu, Y.1
Zheng, Y.F.2
-
18
-
-
0742307292
-
Orthogonal forward selection and backward elimination algorithms for feature subset selection
-
Mao K.Z. Orthogonal forward selection and backward elimination algorithms for feature subset selection. IEEE Trans. Systems Man Cybernet. 34 1 (2004) 629-634
-
(2004)
IEEE Trans. Systems Man Cybernet.
, vol.34
, Issue.1
, pp. 629-634
-
-
Mao, K.Z.1
-
21
-
-
0000903874
-
Soft computing for feature analysis
-
Pal N.R. Soft computing for feature analysis. Fuzzy Sets and Systems 103 (1999) 201-221
-
(1999)
Fuzzy Sets and Systems
, vol.103
, pp. 201-221
-
-
Pal, N.R.1
-
22
-
-
0022834445
-
Fuzzy measures in determining seed points in clustering
-
Pal S.K., and Pramanik P.K. Fuzzy measures in determining seed points in clustering. Pattern Recognition Lett. 4 (1986) 159-164
-
(1986)
Pattern Recognition Lett.
, vol.4
, pp. 159-164
-
-
Pal, S.K.1
Pramanik, P.K.2
-
23
-
-
0027577112
-
Bayesian selection of important features for feedforward neural networks
-
Priddy K.L., Rogers S.K., Ruck D.W., Tarr G.L., and Kabrisky M. Bayesian selection of important features for feedforward neural networks. Neurocomputing 5 (1993) 91-103
-
(1993)
Neurocomputing
, vol.5
, pp. 91-103
-
-
Priddy, K.L.1
Rogers, S.K.2
Ruck, D.W.3
Tarr, G.L.4
Kabrisky, M.5
-
28
-
-
0030248249
-
Improved feature screening in feedforward neural networks
-
Steppe J.M., and Bauer K.W. Improved feature screening in feedforward neural networks. Neurocomputing 13 (1996) 47-58
-
(1996)
Neurocomputing
, vol.13
, pp. 47-58
-
-
Steppe, J.M.1
Bauer, K.W.2
-
30
-
-
0036721934
-
Feature selection with neural networks
-
Verikas A., and Bacauskiene M. Feature selection with neural networks. Pattern Recognition Lett. 23 11 (2002) 1323-1335
-
(2002)
Pattern Recognition Lett.
, vol.23
, Issue.11
, pp. 1323-1335
-
-
Verikas, A.1
Bacauskiene, M.2
-
31
-
-
30344447932
-
Towards a computer-aided diagnosis system for vocal cord diseases
-
Verikas A., Gelzinis A., Bacauskiene M., and Uloza V. Towards a computer-aided diagnosis system for vocal cord diseases. Artificial Intelligence Medicine 36 1 (2006) 71-84
-
(2006)
Artificial Intelligence Medicine
, vol.36
, Issue.1
, pp. 71-84
-
-
Verikas, A.1
Gelzinis, A.2
Bacauskiene, M.3
Uloza, V.4
-
32
-
-
33846938490
-
Multiple feature sets based categorization of laryngeal images
-
Verikas A., Gelzinis A., Valincius D., Bacauskiene M., and Uloza V. Multiple feature sets based categorization of laryngeal images. Comput. Methods Programs Biomedicine 85 3 (2007) 257-266
-
(2007)
Comput. Methods Programs Biomedicine
, vol.85
, Issue.3
, pp. 257-266
-
-
Verikas, A.1
Gelzinis, A.2
Valincius, D.3
Bacauskiene, M.4
Uloza, V.5
-
33
-
-
37349097133
-
-
J. Weston, S. Mujherjee, O. Chapelle, M. Pontil, T. Poggio, V. Vapnik, Feature selection for SVMs, in: T.K. Leen, T.G. Dietterich, V. Tresp (Eds.), Advances in Neural Information Processing Systems, Vol. 13, MIT Press, Cambridge, MA, 2000, pp. 668-674.
-
-
-
-
35
-
-
0036132565
-
Genetic feature selection combined with composite fuzzy nearest neighbor classifiers for hyperspectral satellite imagery
-
Yu S., Backer S.G., and Scheunders P. Genetic feature selection combined with composite fuzzy nearest neighbor classifiers for hyperspectral satellite imagery. Pattern Recognition Lett. 23 1-3 (2002) 183-190
-
(2002)
Pattern Recognition Lett.
, vol.23
, Issue.1-3
, pp. 183-190
-
-
Yu, S.1
Backer, S.G.2
Scheunders, P.3
-
36
-
-
0035294798
-
Feature selection using tabu search method
-
Zhang H., and Sun G. Feature selection using tabu search method. Pattern Recognition 35 (2002) 701-711
-
(2002)
Pattern Recognition
, vol.35
, pp. 701-711
-
-
Zhang, H.1
Sun, G.2
-
38
-
-
0031553665
-
Perturbation method for deleting redundant inputs of perceptron networks
-
Zurada J.M., Malinowski A., and Usui S. Perturbation method for deleting redundant inputs of perceptron networks. Neurocomputing 14 (1997) 177-193
-
(1997)
Neurocomputing
, vol.14
, pp. 177-193
-
-
Zurada, J.M.1
Malinowski, A.2
Usui, S.3
|