메뉴 건너뛰기




Volumn 27, Issue 50, 2007, Pages 13802-13812

Balanced excitatory and inhibitory inputs to cortical neurons decouple firing irregularity from rate modulations

Author keywords

Balanced synaptic input; Brain machine interface; Firing irregularity; Gammadistribution; Information geometry; Neural code

Indexed keywords

ARTICLE; BRAIN CORTEX; BRAIN DEPTH STIMULATION; CONDUCTANCE; MATHEMATICAL COMPUTING; MATHEMATICAL MODEL; NERVE CELL; NERVE CELL INHIBITION; NERVE CELL STIMULATION; NERVE CONDUCTION; PATCH CLAMP; PREDICTION; PRIORITY JOURNAL; QUANTITATIVE ANALYSIS; STIMULUS RESPONSE; SYNAPSE; WHOLE CELL;

EID: 37249044144     PISSN: 02706474     EISSN: 02706474     Source Type: Journal    
DOI: 10.1523/JNEUROSCI.2452-07.2007     Document Type: Article
Times cited : (64)

References (52)
  • 1
    • 33747630326 scopus 로고    scopus 로고
    • Information geometry of estimating functions in semiparametric statistical models
    • Amari S, Kawanabe M (1997) Information geometry of estimating functions in semiparametric statistical models. Bernoulli 3:29-54.
    • (1997) Bernoulli , vol.3 , pp. 29-54
    • Amari, S.1    Kawanabe, M.2
  • 3
    • 0033787498 scopus 로고    scopus 로고
    • Precise spatiotemporal repeating patterns in monkey primary and supplementary motor areas occur at chance levels
    • Baker SN, Lemon RN (2000) Precise spatiotemporal repeating patterns in monkey primary and supplementary motor areas occur at chance levels. J Neurophysiol 84:1770-1780.
    • (2000) J Neurophysiol , vol.84 , pp. 1770-1780
    • Baker, S.N.1    Lemon, R.N.2
  • 4
    • 0035970024 scopus 로고    scopus 로고
    • Construction and analysis of non-Poisson stimulus-response models of neural spiking activity
    • Barbieri R, Quirk MC, Frank LM, Wilson MA, Brown EN (2001) Construction and analysis of non-Poisson stimulus-response models of neural spiking activity. J Neurosci Methods 105:25-37.
    • (2001) J Neurosci Methods , vol.105 , pp. 25-37
    • Barbieri, R.1    Quirk, M.C.2    Frank, L.M.3    Wilson, M.A.4    Brown, E.N.5
  • 5
    • 33846611864 scopus 로고    scopus 로고
    • Balanced inhibition and excitation drives spike activity in spinal half-centers
    • Berg RW, Alaburda A, Hounsgaard J (2007) Balanced inhibition and excitation drives spike activity in spinal half-centers. Science 315:390-393.
    • (2007) Science , vol.315 , pp. 390-393
    • Berg, R.W.1    Alaburda, A.2    Hounsgaard, J.3
  • 7
    • 0032574998 scopus 로고    scopus 로고
    • Visual input evokes transient and strong shunting inhibition in visual cortical neurons
    • Borg-Graham LJ, Monier C, Fregnac Y (1998) Visual input evokes transient and strong shunting inhibition in visual cortical neurons. Nature 393:369-373.
    • (1998) Nature , vol.393 , pp. 369-373
    • Borg-Graham, L.J.1    Monier, C.2    Fregnac, Y.3
  • 8
    • 0036482863 scopus 로고    scopus 로고
    • The time-rescaling theorem and its application to neural spike train data analysis
    • Brown EN, Barbieri R, Ventura V, Kass RE, Frank LM (2001) The time-rescaling theorem and its application to neural spike train data analysis. Neural Comput 14:325-346.
    • (2001) Neural Comput , vol.14 , pp. 325-346
    • Brown, E.N.1    Barbieri, R.2    Ventura, V.3    Kass, R.E.4    Frank, L.M.5
  • 11
    • 33144489051 scopus 로고    scopus 로고
    • Relation between single neuron and population spiking statistics and effects on network activity
    • Cateau H, Reyes AD (2006) Relation between single neuron and population spiking statistics and effects on network activity. Phys Rev Lett 96:058101.
    • (2006) Phys Rev Lett , vol.96 , pp. 058101
    • Cateau, H.1    Reyes, A.D.2
  • 12
    • 0037104631 scopus 로고    scopus 로고
    • Gain modulation from background synaptic input
    • Chance FS, Abbott LF, Reyes AD (2002) Gain modulation from background synaptic input. Neuron 35:773-782.
    • (2002) Neuron , vol.35 , pp. 773-782
    • Chance, F.S.1    Abbott, L.F.2    Reyes, A.D.3
  • 15
    • 0033053130 scopus 로고    scopus 로고
    • Impact of network activity on the integrative properties of neocortical pyramidal neurons in vivo
    • Destexhe A, Pare D (1999) Impact of network activity on the integrative properties of neocortical pyramidal neurons in vivo. J Neurophysiol 81:1531-1547.
    • (1999) J Neurophysiol , vol.81 , pp. 1531-1547
    • Destexhe, A.1    Pare, D.2
  • 16
    • 0035834798 scopus 로고    scopus 로고
    • Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons
    • Destexhe A, Rudolph M, Fellous JM, Sejnowski TJ (2001) Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience 107:13-24.
    • (2001) Neuroscience , vol.107 , pp. 13-24
    • Destexhe, A.1    Rudolph, M.2    Fellous, J.M.3    Sejnowski, T.J.4
  • 17
    • 0141499222 scopus 로고    scopus 로고
    • The high-conductance state of neocortical neurons in vivo
    • Destexhe A, Rudolph M, Pare D (2003) The high-conductance state of neocortical neurons in vivo. Nat Rev Neurosci 4:739-751.
    • (2003) Nat Rev Neurosci , vol.4 , pp. 739-751
    • Destexhe, A.1    Rudolph, M.2    Pare, D.3
  • 18
    • 33947276377 scopus 로고    scopus 로고
    • Dynamical basis of irregular spiking in NMDA-driven prefrontal cortex neurons
    • Durstewitz D, Gabriel T (2007) Dynamical basis of irregular spiking in NMDA-driven prefrontal cortex neurons. Cereb Cortex 17:894-908.
    • (2007) Cereb Cortex , vol.17 , pp. 894-908
    • Durstewitz, D.1    Gabriel, T.2
  • 19
    • 0142141489 scopus 로고    scopus 로고
    • Synaptic background noise controls the input/output characteristics of single cells in an in vitro model of in vivo activity
    • Fellous JM, Rudolph M, Destexhe A, Sejnowski TJ (2003) Synaptic background noise controls the input/output characteristics of single cells in an in vitro model of in vivo activity. Neuroscience 122:811-829.
    • (2003) Neuroscience , vol.122 , pp. 811-829
    • Fellous, J.M.1    Rudolph, M.2    Destexhe, A.3    Sejnowski, T.J.4
  • 20
    • 3242683424 scopus 로고    scopus 로고
    • Synaptic interactions between pyramidal cells and interneurone subtypes during seizure-like activity in the rat hippocampus
    • Fujiwara-Tsukamoto Y, Isomura Y, Kaneda K, Takada M (2004) Synaptic interactions between pyramidal cells and interneurone subtypes during seizure-like activity in the rat hippocampus. J Physiol (Lond) 557:961-979.
    • (2004) J Physiol (Lond) , vol.557 , pp. 961-979
    • Fujiwara-Tsukamoto, Y.1    Isomura, Y.2    Kaneda, K.3    Takada, M.4
  • 22
    • 33646833761 scopus 로고    scopus 로고
    • Neocortical network activity in vivo is generated through a dynamic balance of excitation and inhibition
    • Haider B, Duque A, Hasenstaub AR, McCormick DA (2006) Neocortical network activity in vivo is generated through a dynamic balance of excitation and inhibition. J Neurosci 26:4535-4545.
    • (2006) J Neurosci , vol.26 , pp. 4535-4545
    • Haider, B.1    Duque, A.2    Hasenstaub, A.R.3    McCormick, D.A.4
  • 23
    • 0029894898 scopus 로고    scopus 로고
    • Comparison of discharge variability in vitro and in vivo in cat visual cortex neurons
    • Holt GR, Softky WR, Koch C, Douglas RJ (1996) Comparison of discharge variability in vitro and in vivo in cat visual cortex neurons. J Neurophysiol 75:1806-1814.
    • (1996) J Neurophysiol , vol.75 , pp. 1806-1814
    • Holt, G.R.1    Softky, W.R.2    Koch, C.3    Douglas, R.J.4
  • 24
    • 0142058589 scopus 로고    scopus 로고
    • Glutamatergic propagation of GABAergic seizure-like afterdischarge in the hippocampus in vitro
    • Isomura Y, Fujiwara-Tsukamoto Y, Takada M (2003) Glutamatergic propagation of GABAergic seizure-like afterdischarge in the hippocampus in vitro. J Neurophysiol 90:2746-2751.
    • (2003) J Neurophysiol , vol.90 , pp. 2746-2751
    • Isomura, Y.1    Fujiwara-Tsukamoto, Y.2    Takada, M.3
  • 25
    • 0035432526 scopus 로고    scopus 로고
    • Aspike-train probability model
    • Kass RE, Ventura V (2001) Aspike-train probability model. Neural Comput 13:1713-1720.
    • (2001) Neural Comput , vol.13 , pp. 1713-1720
    • Kass, R.E.1    Ventura, V.2
  • 26
    • 37249036856 scopus 로고    scopus 로고
    • Koch C (1999) Biophysics of computation. Oxford, UK: Oxford UP. Koyama S, Shinomoto S (2005) Empirical Bayes interpretations of random point events. J Physics A 38:L531-L537.
    • Koch C (1999) Biophysics of computation. Oxford, UK: Oxford UP. Koyama S, Shinomoto S (2005) Empirical Bayes interpretations of random point events. J Physics A 38:L531-L537.
  • 28
    • 37249039836 scopus 로고    scopus 로고
    • Unbiased estimator of shape parameter for spiking irregularities under changing environments
    • Weiss Y, Scholkopf B, Platt J, eds, Cambridge, MA: MIT
    • Miura K, Okada M, Amari S (2006a) Unbiased estimator of shape parameter for spiking irregularities under changing environments. In: Advances in Neural Information Processing Systems (Weiss Y, Scholkopf B, Platt J, eds), 18:891-898. Cambridge, MA: MIT.
    • (2006) Advances in Neural Information Processing Systems , vol.18 , pp. 891-898
    • Miura, K.1    Okada, M.2    Amari, S.3
  • 29
    • 33749438552 scopus 로고    scopus 로고
    • Estimating spiking irregularities under changing environments
    • Miura K, Okada M, Amari S (2006b) Estimating spiking irregularities under changing environments. Neural Comput 18:2359-2386.
    • (2006) Neural Comput , vol.18 , pp. 2359-2386
    • Miura, K.1    Okada, M.2    Amari, S.3
  • 30
    • 0038697974 scopus 로고    scopus 로고
    • Synchrony-dependent propagation of firing rate in iteratively constructed networks in vitro
    • Reyes AD (2003) Synchrony-dependent propagation of firing rate in iteratively constructed networks in vitro. Nat Neurosci 6:593-599.
    • (2003) Nat Neurosci , vol.6 , pp. 593-599
    • Reyes, A.D.1
  • 31
    • 0027494363 scopus 로고
    • Injection of digitally synthesized synaptic conductance transients to measure the integrative properties of neurons
    • Robinson HPC, Kawai N (1993) Injection of digitally synthesized synaptic conductance transients to measure the integrative properties of neurons. J Neurosci Methods 49:157-165.
    • (1993) J Neurosci Methods , vol.49 , pp. 157-165
    • Robinson, H.P.C.1    Kawai, N.2
  • 32
    • 0033213820 scopus 로고    scopus 로고
    • Temporally correlated inputs to leaky integrate-and-fire models can reproduce spiking statistics of cortical neurons
    • Sakai Y, Funahashi S, Shinomoto S (1999) Temporally correlated inputs to leaky integrate-and-fire models can reproduce spiking statistics of cortical neurons. Neural Netw 12:1181-1190.
    • (1999) Neural Netw , vol.12 , pp. 1181-1190
    • Sakai, Y.1    Funahashi, S.2    Shinomoto, S.3
  • 33
    • 0034663013 scopus 로고    scopus 로고
    • Impact of correlated synaptic input on output firing rate and variability in simple neuronal models
    • Salinas E, Sejnowski TJ (2000) Impact of correlated synaptic input on output firing rate and variability in simple neuronal models. J Neurosci 20:6193-6209.
    • (2000) J Neurosci , vol.20 , pp. 6193-6209
    • Salinas, E.1    Sejnowski, T.J.2
  • 34
    • 0028024043 scopus 로고
    • Noise, neural codes and cortical organization
    • Shadlen MN, Newsome WT (1994) Noise, neural codes and cortical organization. Curr Opin Neurobiol 4:569-579.
    • (1994) Curr Opin Neurobiol , vol.4 , pp. 569-579
    • Shadlen, M.N.1    Newsome, W.T.2
  • 36
    • 0032525177 scopus 로고    scopus 로고
    • The variable discharge of cortical neurons: Implications for connectivity, computation, and information coding
    • Shadlen MN, Newsome WT (1998) The variable discharge of cortical neurons: implications for connectivity, computation, and information coding. J Neurosci 18:3870-3896.
    • (1998) J Neurosci , vol.18 , pp. 3870-3896
    • Shadlen, M.N.1    Newsome, W.T.2
  • 37
    • 0027430647 scopus 로고
    • The dynamic clamp: Artificial conductances in biological neurons
    • Sharp AA, O'Neil MB, Abbott LF, Marder E (1993) The dynamic clamp: artificial conductances in biological neurons. Trends Neurosci 16:389-394.
    • (1993) Trends Neurosci , vol.16 , pp. 389-394
    • Sharp, A.A.1    O'Neil, M.B.2    Abbott, L.F.3    Marder, E.4
  • 38
    • 0035474922 scopus 로고    scopus 로고
    • Modeling spiking behavior of neurons with time-dependent Poisson processes
    • Shinomoto S, Tsubo Y (2001) Modeling spiking behavior of neurons with time-dependent Poisson processes. Phys Rev E 64:041910.
    • (2001) Phys Rev E , vol.64 , pp. 041910
    • Shinomoto, S.1    Tsubo, Y.2
  • 39
    • 0033561846 scopus 로고    scopus 로고
    • The Ornstein-Uhlenbeck process does not reproduce spiking statistics of neurons in prefrontal cortex
    • Shinomoto S, Sakai Y, Funahashi S (1999) The Ornstein-Uhlenbeck process does not reproduce spiking statistics of neurons in prefrontal cortex. Neural Comput 11:935-951.
    • (1999) Neural Comput , vol.11 , pp. 935-951
    • Shinomoto, S.1    Sakai, Y.2    Funahashi, S.3
  • 40
    • 0242550879 scopus 로고    scopus 로고
    • Differences in spiking patterns among cortical neurons
    • Shinomoto S, Shima K, Tanji J (2003) Differences in spiking patterns among cortical neurons. Neural Comput 15:2823-2842.
    • (2003) Neural Comput , vol.15 , pp. 2823-2842
    • Shinomoto, S.1    Shima, K.2    Tanji, J.3
  • 41
    • 11844301619 scopus 로고    scopus 로고
    • A measure of local variation of inter-spike intervals
    • Shinomoto S, Miura K, Koyama S (2005a) A measure of local variation of inter-spike intervals. Biosystems 79:67-72.
    • (2005) Biosystems , vol.79 , pp. 67-72
    • Shinomoto, S.1    Miura, K.2    Koyama, S.3
  • 42
    • 21544466431 scopus 로고    scopus 로고
    • Regional and laminar differences in in vivo firing patterns of primate cortical neurons
    • Shinomoto S, Miyazaki Y, Tamura H, Fujita I (2005b) Regional and laminar differences in in vivo firing patterns of primate cortical neurons. J Neurophysiol 94:567-575.
    • (2005) J Neurophysiol , vol.94 , pp. 567-575
    • Shinomoto, S.1    Miyazaki, Y.2    Tamura, H.3    Fujita, I.4
  • 43
    • 0038688379 scopus 로고    scopus 로고
    • Turning on and off recurrent balanced cortical activity
    • Shu Y, Hasenstaub A, McCormick DA (2003) Turning on and off recurrent balanced cortical activity. Nature 423:288-293.
    • (2003) Nature , vol.423 , pp. 288-293
    • Shu, Y.1    Hasenstaub, A.2    McCormick, D.A.3
  • 44
    • 0028958991 scopus 로고
    • Simple codes versus efficient codes
    • Softky WR (1995) Simple codes versus efficient codes. Curr Opin Neurobiol 5:239-247.
    • (1995) Curr Opin Neurobiol , vol.5 , pp. 239-247
    • Softky, W.R.1
  • 45
    • 0027498486 scopus 로고
    • The highly irregular firing of cortical cells is inconsistent with temporal integration of random EPSPs
    • Softky WR, Koch C (1993) The highly irregular firing of cortical cells is inconsistent with temporal integration of random EPSPs. J Neurosci 13:334-350.
    • (1993) J Neurosci , vol.13 , pp. 334-350
    • Softky, W.R.1    Koch, C.2
  • 46
    • 0032106255 scopus 로고    scopus 로고
    • Input synchrony and the irregular firing of cortical neurons
    • Stevens CF, Zador AM (1998) Input synchrony and the irregular firing of cortical neurons. Nat Neurosci 1:210-217.
    • (1998) Nat Neurosci , vol.1 , pp. 210-217
    • Stevens, C.F.1    Zador, A.M.2
  • 47
    • 0031182938 scopus 로고    scopus 로고
    • Physiological gain leads to high ISI variability in a simple model of a cortical regular spiking cell
    • Troyer TW, Miller KD (1997) Physiological gain leads to high ISI variability in a simple model of a cortical regular spiking cell. Neural Comput 9:971-983.
    • (1997) Neural Comput , vol.9 , pp. 971-983
    • Troyer, T.W.1    Miller, K.D.2
  • 48
    • 34249863324 scopus 로고    scopus 로고
    • Layer and frequency dependences of phase response properties of pyramidal neurons in rat motor cortex
    • in press
    • Tsubo Y, Takada M, Reyes AD, Fukai T (2007) Layer and frequency dependences of phase response properties of pyramidal neurons in rat motor cortex. Eur J Neurosci, in press.
    • (2007) Eur J Neurosci
    • Tsubo, Y.1    Takada, M.2    Reyes, A.D.3    Fukai, T.4
  • 49
    • 0003562697 scopus 로고
    • nonlinear and stochastic theories. Cambridge, UK: Cambridge UP
    • Tuckwell HC (1988) Introduction to theoretical neurobiology: volume 2, nonlinear and stochastic theories. Cambridge, UK: Cambridge UP.
    • (1988) Introduction to theoretical neurobiology , vol.2
    • Tuckwell, H.C.1
  • 50
    • 36149005118 scopus 로고
    • On the theory of the Brownian motion
    • Uhlenbeck GE, Ornstein LS (1930) On the theory of the Brownian motion. Phys Rev 36:823-841.
    • (1930) Phys Rev , vol.36 , pp. 823-841
    • Uhlenbeck, G.E.1    Ornstein, L.S.2
  • 51
    • 0344120308 scopus 로고    scopus 로고
    • Balanced inhibition underlies tuning and sharpens spike timing in auditory cortex
    • Wehr M, Zador AM (2003) Balanced inhibition underlies tuning and sharpens spike timing in auditory cortex. Nature 426:442-446.
    • (2003) Nature , vol.426 , pp. 442-446
    • Wehr, M.1    Zador, A.M.2
  • 52
    • 0037444559 scopus 로고    scopus 로고
    • Decoding spike trains instant by instant using order statistics and the mixture-of-Poissons model
    • Wiener MC, Richmond BJ (2003) Decoding spike trains instant by instant using order statistics and the mixture-of-Poissons model. J Neurosci 23:2394-2406.
    • (2003) J Neurosci , vol.23 , pp. 2394-2406
    • Wiener, M.C.1    Richmond, B.J.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.