메뉴 건너뛰기




Volumn , Issue , 2005, Pages 891-898

Unbiased estimator of shape parameter for spiking irregularities under changing environments

Author keywords

[No Author keywords available]

Indexed keywords

CHANGING ENVIRONMENT; ENVIRONMENT CHANGE; ESTIMATING FUNCTIONS; FIRING RATES; FISHER INFORMATION; FUNCTIONAL FORMS; GAMMA DISTRIBUTION; INFORMATION GEOMETRY; INTER-SPIKE INTERVAL; MODEL PARAMETERS; OBSERVED DATA; SEMIPARAMETRIC MODELS; SHAPE PARAMETERS; SPIKE GENERATION; STATISTICAL MODELS; TIME-DEPENDENT; UNBIASED ESTIMATOR; UNSOLVED PROBLEMS;

EID: 37249039836     PISSN: 10495258     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (5)

References (21)
  • 1
    • 0029894898 scopus 로고    scopus 로고
    • Comparison of discharge variability in vitro and in vivo in cat visual cortex neurons
    • G. R. Holt, W. R. Softky, C. Koch, and R. J. Douglas, Comparison of discharge variability in vitro and in vivo in cat visual cortex neurons, J. Neurophysiol., Vol. 75, pp. 1806-14, 1996.
    • (1996) J. Neurophysiol. , vol.75 , pp. 1806-1814
    • Holt, G.R.1    Softky, W.R.2    Koch, C.3    Douglas, R.J.4
  • 3
    • 0033213820 scopus 로고    scopus 로고
    • Temporally correlated inputs to leaky integrateand- fire models can reproduce spiking statistics of cortical neurons
    • Y. Sakai, S. Funahashi, and S. Shinomoto, Temporally correlated inputs to leaky integrateand- fire models can reproduce spiking statistics of cortical neurons, Neural Netw., Vol. 12, pp. 1181-1190, 1999.
    • (1999) Neural Netw. , vol.12 , pp. 1181-1190
    • Sakai, Y.1    Funahashi, S.2    Shinomoto, S.3
  • 5
    • 0033787498 scopus 로고    scopus 로고
    • Precise spatiotemporal repeating patterns in monkey primary and supplementary motor areas occur at chance levels
    • S. N. Baker and R. N. Lemon, Precise spatiotemporal repeating patterns in monkey primary and supplementary motor areas occur at chance levels, J. Neurophysiol., Vol. 84, pp. 1770-80, 2000.
    • (2000) J. Neurophysiol. , vol.84 , pp. 1770-1780
    • Baker, S.N.1    Lemon, R.N.2
  • 6
    • 0242550879 scopus 로고    scopus 로고
    • Differences in spiking patterns among cortical neurons
    • S. Shinomoto, K. Shima, and J. Tanji, Differences in spiking patterns among cortical neurons, Neural Comput.,Vol. 15, pp. 2823-42, 2003.
    • (2003) Neural Comput. , vol.15 , pp. 2823-2842
    • Shinomoto, S.1    Shima, K.2    Tanji, J.3
  • 7
    • 21544466431 scopus 로고    scopus 로고
    • Regional and laminar differences in in vivo firing patterns of primate cortical neurons
    • in press
    • S. Shinomoto, Y. Miyazaki, H. Tamura, and I. Fujita, Regional and laminar differences in in vivo firing patterns of primate cortical neurons, J. Neurophysiol., in press.
    • J. Neurophysiol.
    • Shinomoto, S.1    Miyazaki, Y.2    Tamura, H.3    Fujita, I.4
  • 8
    • 11844301619 scopus 로고    scopus 로고
    • A measure of local variation of inter-spike intervals
    • S. Shinomoto, K. Miura, and S. Koyama, A measure of local variation of inter-spike intervals, Biosystems, Vol. 79, pp. 67-72, 2005.
    • (2005) Biosystems , vol.79 , pp. 67-72
    • Shinomoto, S.1    Miura, K.2    Koyama, S.3
  • 10
    • 27144528717 scopus 로고    scopus 로고
    • Information geometry of interspike intervals in spiking neurons
    • in press
    • K. Ikeda, Information geometry of interspike intervals in spiking neurons, Neural Comput., in press.
    • Neural Comput.
    • Ikeda, K.1
  • 11
    • 0000454371 scopus 로고
    • An optimum property of regular maximum likelihood estimation
    • V. P. Godambe, An optimum property of regular maximum likelihood estimation, Ann. Math. Statist., Vol. 31, pp. 1208-1211, 1960.
    • (1960) Ann. Math. Statist. , vol.31 , pp. 1208-1211
    • Godambe, V.P.1
  • 12
  • 13
    • 48049116053 scopus 로고
    • Dual connections on the Hilbert bundles of statistical models
    • C. T. J. Dodson (ed.), University of Lancaster Department of Mathematics, Lancaster
    • S. Amari, Dual connections on the Hilbert bundles of statistical models, In C. T. J. Dodson (ed.), Geometrization of statistical theory, pp. 123-152, University of Lancaster Department of Mathematics, Lancaster, 1987.
    • (1987) Geometrization of Statistical Theory , pp. 123-152
    • Amari, S.1
  • 14
    • 0000460064 scopus 로고
    • Estimation in the presence of infinitely many nuisance parameters - Geometry of estimating functions
    • S. Amari and M. Kumon, Estimation in the presence of infinitely many nuisance parameters - geometry of estimating functions, Ann. Statist., Vol. 16, pp. 1044-1068, 1988.
    • (1988) Ann. Statist. , vol.16 , pp. 1044-1068
    • Amari, S.1    Kumon, M.2
  • 15
    • 33747630326 scopus 로고    scopus 로고
    • Information geometry of estimating functions in semi-parametric statistical models
    • S. Amari and M. Kawanabe, Information geometry of estimating functions in semi-parametric statistical models, Bernoulli, Vol. 3, pp. 29-54, 1997.
    • (1997) Bernoulli , vol.3 , pp. 29-54
    • Amari, S.1    Kawanabe, M.2
  • 18
    • 0035397522 scopus 로고    scopus 로고
    • Information geometry on hierarchy of probability distributions
    • S. Amari, Information geometry on hierarchy of probability distributions, IEEE Transactions on Information Theory, Vol. 47, pp. 1701-1711, 2001.
    • (2001) IEEE Transactions on Information Theory , vol.47 , pp. 1701-1711
    • Amari, S.1
  • 19
    • 0001831031 scopus 로고
    • Consistent estimates based on partially consistent observations
    • J. Neyman and E. L. Scott, Consistent estimates based on partially consistent observations, Econometrica, Vol. 32, pp. 1-32, 1948.
    • (1948) Econometrica , vol.32 , pp. 1-32
    • Neyman, J.1    Scott, E.L.2
  • 20
    • 0000197891 scopus 로고
    • Achieving information bounds in non and semiparametric models
    • Y. Ritov and P. J. Bickel, Achieving information bounds in non and semiparametric models, Ann. Statist., Vol. 18, pp. 925-938, 1990.
    • (1990) Ann. Statist. , vol.18 , pp. 925-938
    • Ritov, Y.1    Bickel, P.J.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.