메뉴 건너뛰기




Volumn 12, Issue 5, 2008, Pages 493-514

A generic fuzzy aggregation operator: Rules extraction from and insertion into artificial neural networks

Author keywords

Additive fuzzy systems; Artificial neural networks; Fuzzy aggregation

Indexed keywords

COMPUTATIONAL LINGUISTICS; FEEDFORWARD NEURAL NETWORKS; FUZZY NEURAL NETWORKS; MULTILAYER NEURAL NETWORKS;

EID: 37249043159     PISSN: 14327643     EISSN: 14337479     Source Type: Journal    
DOI: 10.1007/s00500-007-0221-8     Document Type: Article
Times cited : (12)

References (34)
  • 1
    • 0032931822 scopus 로고    scopus 로고
    • Template-based procedures for neural network interpretation
    • Alexander JA and Mozer MC (1999). Template-based procedures for neural network interpretation. Neural Netw 12: 479-498
    • (1999) Neural Netw , vol.12 , pp. 479-498
    • Alexander, J.A.1    Mozer, M.C.2
  • 2
    • 0029484103 scopus 로고
    • Survey and critique of techniques for extracting rules from trained artificial neural networks
    • Andrews R, Diederich J and Tickle AB (1995). Survey and critique of techniques for extracting rules from trained artificial neural networks. Knowledge-Based Syst 8(6): 373-389
    • (1995) Knowledge-Based Syst , vol.8 , Issue.6 , pp. 373-389
    • Andrews, R.1    Diederich, J.2    Tickle, A.B.3
  • 4
    • 0036129249 scopus 로고    scopus 로고
    • Interpretation of artificial neural networks by means of fuzzy rules
    • Castro JL, Mantas CJ and Benítez JM (2002). Interpretation of artificial neural networks by means of fuzzy rules. IEEE Trans Neural Netw 13(1): 101-116
    • (2002) IEEE Trans Neural Netw , vol.13 , Issue.1 , pp. 101-116
    • Castro, J.L.1    Mantas, C.J.2    Benítez, J.M.3
  • 6
    • 0141772906 scopus 로고    scopus 로고
    • Mathematical aggregation operators and their application to video querying
    • Doctoral thesis - research report 2001-2002, Laboratoire d'Informatique de Paris
    • Detyniecki M (2000) Mathematical aggregation operators and their application to video querying. Doctoral thesis - research report 2001-2002, Laboratoire d'Informatique de Paris
    • (2000)
    • Detyniecki, M.1
  • 7
    • 21244495584 scopus 로고    scopus 로고
    • Computational intelligence methods for rule-based data understanding
    • Duch W, Setiono R and Zurada J (2004). Computational intelligence methods for rule-based data understanding. Proc IEEE 92(5): 769-770
    • (2004) Proc IEEE , vol.92 , Issue.5 , pp. 769-770
    • Duch, W.1    Setiono, R.2    Zurada, J.3
  • 8
    • 0028482883 scopus 로고
    • Rule generation from neural networks
    • Fu L (1994). Rule generation from neural networks. IEEE Trans Syst Man cybern 24(8): 1114-1124
    • (1994) IEEE Trans Syst Man Cybern , vol.24 , Issue.8 , pp. 1114-1124
    • Fu, L.1
  • 9
    • 0032584923 scopus 로고    scopus 로고
    • Local cluster neural net: architecture, training and applications
    • Geva S, Malmstrom K and Sitte J (1998). Local cluster neural net: architecture, training and applications. Neurocomputing 20: 35-56
    • (1998) Neurocomputing , vol.20 , pp. 35-56
    • Geva, S.1    Malmstrom, K.2    Sitte, J.3
  • 12
    • 18444364992 scopus 로고    scopus 로고
    • Rule extraction from recurrent neural networks: A taxonomy and review
    • Jacobsson H and Henrik (2005). Rule extraction from recurrent neural networks: A taxonomy and review. Neural Comput 17(6): 1223-1263
    • (2005) Neural Comput , vol.17 , Issue.6 , pp. 1223-1263
    • Jacobsson, H.1    Henrik2
  • 13
    • 0000551266 scopus 로고    scopus 로고
    • On the relationship of associative compensatory operators to triangular norms and conorms
    • Klement P, Mesiar R and Pap E (1996). On the relationship of associative compensatory operators to triangular norms and conorms. Int J Uncertainty Fuzziness Knowledge-Based Syst 4(2): 129-144
    • (1996) Int J Uncertainty Fuzziness Knowledge-Based Syst , vol.4 , Issue.2 , pp. 129-144
    • Klement, P.1    Mesiar, R.2    Pap, E.3
  • 15
    • 23044508082 scopus 로고    scopus 로고
    • Are neural networks white boxes?
    • Kolman E and Margaliot M (2005). Are neural networks white boxes?. IEEE Trans Neural Netw 16(4): 844-852
    • (2005) IEEE Trans Neural Netw , vol.16 , Issue.4 , pp. 844-852
    • Kolman, E.1    Margaliot, M.2
  • 16
    • 0028532753 scopus 로고
    • Fuzzy systems as universal approximators
    • Kosko B (1994). Fuzzy systems as universal approximators. IEEE Transactions Computers 43 11: 1329-1333
    • (1994) IEEE Transactions Computers 43 , vol.11 , pp. 1329-1333
    • Kosko, B.1
  • 18
    • 0002748218 scopus 로고
    • How neural nets work
    • In: Anderson, DZ (eds) American Physical Society, New York
    • Lapedes A and Farber R (1988). How neural nets work. In: Anderson, DZ (eds) Neural information processing systems, American Physical Society, New York
    • (1988) Neural Information Processing Systems
    • Lapedes, A.1    Farber, R.2
  • 19
    • 0032812327 scopus 로고    scopus 로고
    • Rule-extraction by backpropagation of polyhedra
    • Maire F (1999). Rule-extraction by backpropagation of polyhedra. Neural Netw 12: 717-725
    • (1999) Neural Netw , vol.12 , pp. 717-725
    • Maire, F.1
  • 20
    • 0034187785 scopus 로고    scopus 로고
    • Neuro-fuzzy rule generation: Survey in soft computing framework
    • Mitra S and Hayashi Y (2000). Neuro-fuzzy rule generation: Survey in soft computing framework. IEEE Trans Neural Netw 11(3): 748-768
    • (2000) IEEE Trans Neural Netw , vol.11 , Issue.3 , pp. 748-768
    • Mitra, S.1    Hayashi, Y.2
  • 21
    • 0032626974 scopus 로고    scopus 로고
    • Unification of neural and wavelet networks and fuzzy systems
    • Reyneri LM (1999). Unification of neural and wavelet networks and fuzzy systems. IEEE Trans Neural Netw 10(4): 801-814
    • (1999) IEEE Trans Neural Netw , vol.10 , Issue.4 , pp. 801-814
    • Reyneri, L.M.1
  • 22
    • 0033751611 scopus 로고    scopus 로고
    • Extracting M-of-N rules from trained neural networks
    • Setiono R (2000). Extracting M-of-N rules from trained neural networks. IEEE Trans Neural Netw 11(2): 512-519
    • (2000) IEEE Trans Neural Netw , vol.11 , Issue.2 , pp. 512-519
    • Setiono, R.1
  • 23
    • 0018530680 scopus 로고
    • Symmetric summation: A class of operations on fuzzy sets
    • In: Dubois D, Prade H, Yager RR (eds) (1979 Reprinted) Reading in fuzzy sets for intelligent systems. Morgan Kaufman, San Mateo, pp 77-79
    • Silvert W (1993) Symmetric summation: A class of operations on fuzzy sets. IEEE Trans Syst Man Cybern, SMC-9, pp 657-659. In: Dubois D, Prade H, Yager RR (eds) (1979 Reprinted) Reading in fuzzy sets for intelligent systems. Morgan Kaufman, San Mateo, pp 77-79
    • (1993) IEEE Trans Syst Man Cybern, SMC-9 , pp. 657-659
    • Silvert, W.1
  • 25
    • 0032685184 scopus 로고    scopus 로고
    • Symbolic interpretation of artificial neural networks
    • Taha I and Ghosh J (1999). Symbolic interpretation of artificial neural networks. IEEE Trans Knowl Data Eng 11(3): 448-463
    • (1999) IEEE Trans Knowl Data Eng , vol.11 , Issue.3 , pp. 448-463
    • Taha, I.1    Ghosh, J.2
  • 26
    • 0021892282 scopus 로고
    • Fuzzy identification of systems and its application to modeling and control
    • Takagi T and Sugeno M (1985). Fuzzy identification of systems and its application to modeling and control. IEEE Trans Syst Man Cybern 15(1): 116-132
    • (1985) IEEE Trans Syst Man Cybern , vol.15 , Issue.1 , pp. 116-132
    • Takagi, T.1    Sugeno, M.2
  • 27
    • 0032208720 scopus 로고    scopus 로고
    • The truth will come to light: Directions and challenges in extracting the knowledge embedded within trained artificial neural networks
    • Tickle AB, Andrews R, Golea M and Diederich J (1998). The truth will come to light: Directions and challenges in extracting the knowledge embedded within trained artificial neural networks. IEEE Trans Neural Netw 9: 1057-1068
    • (1998) IEEE Trans Neural Netw , vol.9 , pp. 1057-1068
    • Tickle, A.B.1    Andrews, R.2    Golea, M.3    Diederich, J.4
  • 28
    • 0033742671 scopus 로고    scopus 로고
    • Extracting rules from trained neural networks
    • Tsukimoto H (2000). Extracting rules from trained neural networks. IEEE Trans Neural Netw 11(2): 377-389
    • (2000) IEEE Trans Neural Netw , vol.11 , Issue.2 , pp. 377-389
    • Tsukimoto, H.1
  • 29
    • 0000233274 scopus 로고    scopus 로고
    • Uninorm aggregation operators
    • Yager R and Rybalov A (1996). Uninorm aggregation operators. Fuzzy Sets Syst 80: 111-120
    • (1996) Fuzzy Sets Syst , vol.80 , pp. 111-120
    • Yager, R.1    Rybalov, A.2
  • 30
    • 0032295803 scopus 로고    scopus 로고
    • Full reinforcement operators in aggregation techniques
    • Yager R and Rybalov A (1998). Full reinforcement operators in aggregation techniques. IEEE Trans Syst Man Cybern 28: 757-769
    • (1998) IEEE Trans Syst Man Cybern , vol.28 , pp. 757-769
    • Yager, R.1    Rybalov, A.2
  • 31
    • 0015558134 scopus 로고
    • Outline of a new approach to the analysis of complex systems and decision processes
    • Zadeh LA (1973). Outline of a new approach to the analysis of complex systems and decision processes. IEEE Trans Syst Man Cybern 3: 28-44
    • (1973) IEEE Trans Syst Man Cybern , vol.3 , pp. 28-44
    • Zadeh, L.A.1
  • 32
    • 0016458950 scopus 로고
    • The concept of a linguistic variable and its application to approximate reasoning, part 1
    • Zadeh LA (1975). The concept of a linguistic variable and its application to approximate reasoning, part 1. Inf Sci 8: 199-249
    • (1975) Inf Sci , vol.8 , pp. 199-249
    • Zadeh, L.A.1
  • 33
    • 0041382198 scopus 로고
    • Latent connectives in human decision making
    • Zimmermann HJ and Zysno P (1980). Latent connectives in human decision making. Fuzzy Sets Syst 4: 37-51
    • (1980) Fuzzy Sets Syst , vol.4 , pp. 37-51
    • Zimmermann, H.J.1    Zysno, P.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.