메뉴 건너뛰기




Volumn 17, Issue 12, 2005, Pages 2719-2735

Information geometry of interspike intervals in spiking neurons

Author keywords

[No Author keywords available]

Indexed keywords

ACTION POTENTIAL; ARTICLE; BIOLOGICAL MODEL; CLASSIFICATION; NERVE CELL; PHYSIOLOGY; THEORETICAL MODEL;

EID: 27144528717     PISSN: 08997667     EISSN: 1530888X     Source Type: Journal    
DOI: 10.1162/089976605774320593     Document Type: Article
Times cited : (17)

References (16)
  • 2
    • 0035397522 scopus 로고    scopus 로고
    • Information geometry on hierarchy of probability distributions
    • Amari, S.-I. (2001). Information geometry on hierarchy of probability distributions. IEEE Trans. Information Theory, 47(5), 1701-1711.
    • (2001) IEEE Trans. Information Theory , vol.47 , Issue.5 , pp. 1701-1711
    • Amari, S.-I.1
  • 3
    • 0024629649 scopus 로고
    • Statistical inference under multiterminal rate restrictions: A differential geometric approach
    • Amari, S.-I., & Han, T. S. (1989). Statistical inference under multiterminal rate restrictions: A differential geometric approach. IEEE Trans. Information Theory, 35(2), 217-227.
    • (1989) IEEE Trans. Information Theory , vol.35 , Issue.2 , pp. 217-227
    • Amari, S.-I.1    Han, T.S.2
  • 4
    • 33747630326 scopus 로고    scopus 로고
    • Information geometry of estimating functions in semiparametric statistical models
    • Amari, S.-I., & Kawanabe, M. (1997). Information geometry of estimating functions in semiparametric statistical models. Bernoulli, 1(3), 29-54.
    • (1997) Bernoulli , vol.1 , Issue.3 , pp. 29-54
    • Amari, S.-I.1    Kawanabe, M.2
  • 6
    • 0008334021 scopus 로고
    • Conditional likelihood and unconditional optimum estimating equations
    • Godambe, V. P. (1976). Conditional likelihood and unconditional optimum estimating equations. Biometrika, 63, 277-284.
    • (1976) Biometrika , vol.63 , pp. 277-284
    • Godambe, V.P.1
  • 7
    • 0004152049 scopus 로고
    • New York: Oxford University Press
    • Godambe, V. P. (Ed.). (1991). Estimating functions. New York: Oxford University Press.
    • (1991) Estimating Functions
    • Godambe, V.P.1
  • 8
    • 0029894898 scopus 로고    scopus 로고
    • Comparison of discharge variability in vitro and in vivo in cat visual cortex neurons
    • Holt, G. R., Softky, W. R., Koch, C., & Douglas, R. J. (1996). Comparison of discharge variability in vitro and in vivo in cat visual cortex neurons. Journal of Neurophysiology, 75, 1806-1814.
    • (1996) Journal of Neurophysiology , vol.75 , pp. 1806-1814
    • Holt, G.R.1    Softky, W.R.2    Koch, C.3    Douglas, R.J.4
  • 10
    • 0041699727 scopus 로고    scopus 로고
    • Discrete stochastic process underlying perceptual rivalry
    • Murata, T., Matsui, N., Miyauchi, S., Kakita, Y., & Yanagida, T. (2003). Discrete stochastic process underlying perceptual rivalry. Neuroreport, 14(10), 1347-1352.
    • (2003) Neuroreport , vol.14 , Issue.10 , pp. 1347-1352
    • Murata, T.1    Matsui, N.2    Miyauchi, S.3    Kakita, Y.4    Yanagida, T.5
  • 11
    • 0033213820 scopus 로고    scopus 로고
    • Temporally correlated inputs to leaky integrate-and-fire models can reproduce spiking statistics of cortical neurons
    • Sakai, Y., Funahashi, S., & Shinomoto, S. (1999). Temporally correlated inputs to leaky integrate-and-fire models can reproduce spiking statistics of cortical neurons. Neural Networks, 12, 1181-1190.
    • (1999) Neural Networks , vol.12 , pp. 1181-1190
    • Sakai, Y.1    Funahashi, S.2    Shinomoto, S.3
  • 12
    • 0033561846 scopus 로고    scopus 로고
    • The Ornstein-Uhlenbeck process does not reproduce spiking statistics of neurons in prefrontal cortex
    • Shinomoto, S., Sakai, Y., & Funahashi, S. (1999). The Ornstein-Uhlenbeck process does not reproduce spiking statistics of neurons in prefrontal cortex. Neural Computation, 11, 935-951.
    • (1999) Neural Computation , vol.11 , pp. 935-951
    • Shinomoto, S.1    Sakai, Y.2    Funahashi, S.3
  • 13
    • 0036887495 scopus 로고    scopus 로고
    • New classification scheme of cortical sites with the neuronal spiking characteristics
    • Shinomoto, S., Shima, K., & Tanji, J. (2002). New classification scheme of cortical sites with the neuronal spiking characteristics. Neural Networks, 15(10), 1165-1169.
    • (2002) Neural Networks , vol.15 , Issue.10 , pp. 1165-1169
    • Shinomoto, S.1    Shima, K.2    Tanji, J.3
  • 14
    • 0242550879 scopus 로고    scopus 로고
    • Differences in spiking patterns among cortical neurons
    • Shinomoto, S., Shima, K., & Tanji, J. (2003). Differences in spiking patterns among cortical neurons. Neural Computation, 15(12), 2823-2842.
    • (2003) Neural Computation , vol.15 , Issue.12 , pp. 2823-2842
    • Shinomoto, S.1    Shima, K.2    Tanji, J.3
  • 15
    • 0035474922 scopus 로고    scopus 로고
    • Modeling spiking behavior of neurons with time-dependent Poisson processes
    • Shinomoto, S., & Tsubo, Y. (2001). Modeling spiking behavior of neurons with time-dependent Poisson processes. Physical Review E, 64, 041910.
    • (2001) Physical Review E , vol.64 , pp. 041910
    • Shinomoto, S.1    Tsubo, Y.2
  • 16
    • 0036635472 scopus 로고    scopus 로고
    • Attractor reliability reveals deterministic structure in neuronal spike trains
    • Tiesinga, P. H. E., Fellous, J. M., & Sejnowski, T. J. (2002). Attractor reliability reveals deterministic structure in neuronal spike trains. Neural Computation, 14, 1629-1650.
    • (2002) Neural Computation , vol.14 , pp. 1629-1650
    • Tiesinga, P.H.E.1    Fellous, J.M.2    Sejnowski, T.J.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.