메뉴 건너뛰기




Volumn , Issue , 2007, Pages 968-976

Distributed classification in peer-to-peer networks

Author keywords

Distributed classification; Distributed plurality voting; P2P networks

Indexed keywords

DISTRIBUTED CLASSIFICATION; DISTRIBUTED PLURALITY VOTING; PEER-TO-PEER(P2P) NETWORKS;

EID: 36849051408     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1145/1281192.1281296     Document Type: Conference Paper
Times cited : (69)

References (26)
  • 2
    • 0038483826 scopus 로고    scopus 로고
    • Emergence of scaling in random networks
    • A.-L. Barabsi and R. Albert. Emergence of scaling in random networks. Science, 286(5439):509-512, 1999.
    • (1999) Science , vol.286 , Issue.5439 , pp. 509-512
    • Barabsi, A.-L.1    Albert, R.2
  • 5
    • 0030211964 scopus 로고    scopus 로고
    • Bagging predictors
    • L. Breiman. Bagging predictors. Machine Learning, 24(2):123-140, 1996.
    • (1996) Machine Learning , vol.24 , Issue.2 , pp. 123-140
    • Breiman, L.1
  • 6
    • 0032634129 scopus 로고    scopus 로고
    • Pasting bites together for prediction in large data sets
    • L. Breiman. Pasting bites together for prediction in large data sets. Machine Learning, 36(2):85-103, 1999.
    • (1999) Machine Learning , vol.36 , Issue.2 , pp. 85-103
    • Breiman, L.1
  • 7
    • 85152630265 scopus 로고
    • A comparative evaluation of voting and meta-learning on partitioned data
    • P. Chan and S. Stolfo. A comparative evaluation of voting and meta-learning on partitioned data. In ICML, pages 90-98, 1995.
    • (1995) ICML , pp. 90-98
    • Chan, P.1    Stolfo, S.2
  • 10
    • 33745479072 scopus 로고    scopus 로고
    • K-means clustering over a large, dynamic network
    • S. Datta, C. Giannella, and H. Kargupta. K-means clustering over a large, dynamic network. In SDM, pages 153-164, 2006.
    • (2006) SDM , pp. 153-164
    • Datta, S.1    Giannella, C.2    Kargupta, H.3
  • 11
    • 12144288329 scopus 로고    scopus 로고
    • Is combining classifiers with stacking better than selecting the best one?
    • S. Džeroski and B. Ženko. Is combining classifiers with stacking better than selecting the best one? Machine Learning, 54(3):255-273, 2004.
    • (2004) Machine Learning , vol.54 , Issue.3 , pp. 255-273
    • Džeroski, S.1    Ženko, B.2
  • 12
    • 0036833267 scopus 로고    scopus 로고
    • Plurality voting-based multiple classifier systems: Statistically independent with respect to dependent classifier sets
    • M. Demrekler and H. Altincay. Plurality voting-based multiple classifier systems: statistically independent with respect to dependent classifier sets. Pattern Recognition, 35(11):2365-2379, 2002.
    • (2002) Pattern Recognition , vol.35 , Issue.11 , pp. 2365-2379
    • Demrekler, M.1    Altincay, H.2
  • 13
    • 29644438050 scopus 로고    scopus 로고
    • Statistical comparisons of classifiers over multiple data sets
    • J. Demsar. Statistical comparisons of classifiers over multiple data sets. Journal of Machine learning research, 7:1-30, 2006.
    • (2006) Journal of Machine learning research , vol.7 , pp. 1-30
    • Demsar, J.1
  • 14
    • 0002978642 scopus 로고    scopus 로고
    • Experiments with a new boosting algorithm
    • Y. Freund and R. E. Schapire. Experiments with a new boosting algorithm. In ICML, pages 148-156, 1996.
    • (1996) ICML , pp. 148-156
    • Freund, Y.1    Schapire, R.E.2
  • 15
    • 0035789273 scopus 로고    scopus 로고
    • The distributed boosting algorithm
    • A. Lazarevic and Z. Obradovic. The distributed boosting algorithm. In KDD, pages 311-316, 2001.
    • (2001) KDD , pp. 311-316
    • Lazarevic, A.1    Obradovic, Z.2
  • 16
    • 0038667775 scopus 로고    scopus 로고
    • Performance analysis of pattern classifier combination by plurality voting
    • X. Lin, S. Yacoub, J. Burns, and S. Simske. Performance analysis of pattern classifier combination by plurality voting. Pattern Recognition Letters, 24:1959-1969, 2003.
    • (2003) Pattern Recognition Letters , vol.24 , pp. 1959-1969
    • Lin, X.1    Yacoub, S.2    Burns, J.3    Simske, S.4
  • 18
    • 0032661927 scopus 로고    scopus 로고
    • Using correspondence analysis to combine classifiers
    • C. J. Merz. Using correspondence analysis to combine classifiers. Machine Learning, 36(1-2):33-58, 1999.
    • (1999) Machine Learning , vol.36 , Issue.1-2 , pp. 33-58
    • Merz, C.J.1
  • 20
    • 33745835375 scopus 로고    scopus 로고
    • Automatic document organization in a p2p environment
    • S. Siersdorfer and S. Sizov. Automatic document organization in a p2p environment. In ECIR, pages 265-276, 2006.
    • (2006) ECIR , pp. 265-276
    • Siersdorfer, S.1    Sizov, S.2
  • 21
    • 0037365188 scopus 로고    scopus 로고
    • Combining classifiers with meta decision trees
    • L. Todorovski and S. Džeroski. Combining classifiers with meta decision trees. Machine Learning, 50(3):223-249, 2003.
    • (2003) Machine Learning , vol.50 , Issue.3 , pp. 223-249
    • Todorovski, L.1    Džeroski, S.2
  • 23
    • 0032482432 scopus 로고    scopus 로고
    • Collective dynamics of 'small-world' networks
    • D. Watts and S. Strogatz. Collective dynamics of 'small-world' networks. Nature, 393(6684):440-442, 1998.
    • (1998) Nature , vol.393 , Issue.6684 , pp. 440-442
    • Watts, D.1    Strogatz, S.2
  • 24
    • 33745461062 scopus 로고    scopus 로고
    • Local 12 thresholding based data mining in peer-to-peer systems
    • R. Wolff, K. Bhaduri, and H. Kargupta. Local 12 thresholding based data mining in peer-to-peer systems. In SDM, pages 430-441, 2006.
    • (2006) SDM , pp. 430-441
    • Wolff, R.1    Bhaduri, K.2    Kargupta, H.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.