메뉴 건너뛰기




Volumn 41, Issue 4, 2008, Pages 1373-1383

Linear feature extraction by integrating pairwise and global discriminatory information via sequential forward floating selection and kernel QR factorization with column pivoting

Author keywords

Feature extraction; Kernel methods; Linear discriminant analysis

Indexed keywords

DISCRIMINANT ANALYSIS; FUNCTION EVALUATION; INFORMATION ANALYSIS; LINEAR SYSTEMS; ROBUSTNESS (CONTROL SYSTEMS);

EID: 36749067810     PISSN: 00313203     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.patcog.2007.09.008     Document Type: Article
Times cited : (7)

References (27)
  • 1
    • 0000764772 scopus 로고
    • The use of multiple measurements in taxonomic problems
    • Fisher R.A. The use of multiple measurements in taxonomic problems. Ann. Eugenics 7 (1936) 179-188
    • (1936) Ann. Eugenics , vol.7 , pp. 179-188
    • Fisher, R.A.1
  • 4
    • 0035393361 scopus 로고    scopus 로고
    • Multiclass linear dimension reduction by weighted pairwise Fisher criteria
    • Loog M., Duin R.P.W., and Haeb-Umbach R. Multiclass linear dimension reduction by weighted pairwise Fisher criteria. IEEE Trans. Pattern Anal. Mach. Intell. 23 7 (2001) 762-766
    • (2001) IEEE Trans. Pattern Anal. Mach. Intell. , vol.23 , Issue.7 , pp. 762-766
    • Loog, M.1    Duin, R.P.W.2    Haeb-Umbach, R.3
  • 5
    • 3042673775 scopus 로고    scopus 로고
    • Linear dimensionality reduction via a heteroscedastic extension of LDA: The Chernoff criterion
    • Loog M., and Duin R.P.W. Linear dimensionality reduction via a heteroscedastic extension of LDA: The Chernoff criterion. IEEE Trans. Pattern Anal. Mach. Intell. 26 6 (2004) 732-739
    • (2004) IEEE Trans. Pattern Anal. Mach. Intell. , vol.26 , Issue.6 , pp. 732-739
    • Loog, M.1    Duin, R.P.W.2
  • 6
    • 10644221106 scopus 로고    scopus 로고
    • Uncorrelated heteroscedastic LDA based on the weighted pairwise Chernoff criterion
    • Qin A.K., Suganthan P.N., and Loog M. Uncorrelated heteroscedastic LDA based on the weighted pairwise Chernoff criterion. Pattern Recognition 38 (2005) 613-616
    • (2005) Pattern Recognition , vol.38 , pp. 613-616
    • Qin, A.K.1    Suganthan, P.N.2    Loog, M.3
  • 8
    • 0034300876 scopus 로고    scopus 로고
    • Feature reduction for classification of multidimensional data
    • Brunzell H., and Eriksson J. Feature reduction for classification of multidimensional data. Pattern Recognition 33 (2000) 1741-1748
    • (2000) Pattern Recognition , vol.33 , pp. 1741-1748
    • Brunzell, H.1    Eriksson, J.2
  • 9
    • 0019999412 scopus 로고
    • Linear dimension reduction and Bayes classification with unknown population parameters
    • Tubbs J.D., Coberly W.A., and Young D.M. Linear dimension reduction and Bayes classification with unknown population parameters. Pattern Recognition 15 3 (1982) 167-172
    • (1982) Pattern Recognition , vol.15 , Issue.3 , pp. 167-172
    • Tubbs, J.D.1    Coberly, W.A.2    Young, D.M.3
  • 10
    • 33644860218 scopus 로고    scopus 로고
    • A linear feature extraction for multiclass classification problems based on class mean and covariance discriminant information
    • Hsieh P.F., Wang D.S., and Hsu C.W. A linear feature extraction for multiclass classification problems based on class mean and covariance discriminant information. IEEE Trans. Pattern Anal. Mach. Intell. 28 2 (2006) 223-235
    • (2006) IEEE Trans. Pattern Anal. Mach. Intell. , vol.28 , Issue.2 , pp. 223-235
    • Hsieh, P.F.1    Wang, D.S.2    Hsu, C.W.3
  • 11
    • 0031621479 scopus 로고    scopus 로고
    • P.F. Hsieh, D.A. Landgrebe, Linear feature extraction for multiclass problems, in: Proceedings of IEEE International Geoscience and Remote Sensing Symposium, vol. 4, 1998, pp. 2050-2052.
  • 14
    • 0031078007 scopus 로고    scopus 로고
    • Feature selection: Evaluation, application, and small sample performance
    • Jain A., and Zongker D. Feature selection: Evaluation, application, and small sample performance. IEEE Trans. Pattern Anal. Mach. Intell. 19 2 (1997) 153-158
    • (1997) IEEE Trans. Pattern Anal. Mach. Intell. , vol.19 , Issue.2 , pp. 153-158
    • Jain, A.1    Zongker, D.2
  • 15
    • 0033640901 scopus 로고    scopus 로고
    • Comparison of algorithms that select features for pattern classifiers
    • Kudo M., and Sklansky J. Comparison of algorithms that select features for pattern classifiers. Pattern Recognition 33 (2000) 25-41
    • (2000) Pattern Recognition , vol.33 , pp. 25-41
    • Kudo, M.1    Sklansky, J.2
  • 16
    • 33745561205 scopus 로고    scopus 로고
    • An introduction to variable, feature selection
    • Guyon I., and Elisseeff A. An introduction to variable, feature selection. J. Mach. Learn. Res. 3 (2003) 1157-1182
    • (2003) J. Mach. Learn. Res. , vol.3 , pp. 1157-1182
    • Guyon, I.1    Elisseeff, A.2
  • 17
    • 36749016408 scopus 로고    scopus 로고
    • G. John, R. Kohavi, K. Pfleger, Irrelevant features and the subset selection problem, in: Machine Learning: Proceedings of the Eleventh International Conference, Morgan Kaufmann, 1994, Los Altos, CA, pp. 121-129.
  • 18
    • 0031381525 scopus 로고    scopus 로고
    • Wrappers for feature selection
    • Kohavi R., and John G. Wrappers for feature selection. Artif. Intell. 97 (1997) 273-324
    • (1997) Artif. Intell. , vol.97 , pp. 273-324
    • Kohavi, R.1    John, G.2
  • 19
    • 0017535866 scopus 로고
    • A branch and bound algorithm for feature subset selection
    • Narendra P.M., and Fukunaga K. A branch and bound algorithm for feature subset selection. IEEE Trans. Comput. c-26 9 (1977) 912-917
    • (1977) IEEE Trans. Comput. , vol.c-26 , Issue.9 , pp. 912-917
    • Narendra, P.M.1    Fukunaga, K.2
  • 20
    • 0024895461 scopus 로고
    • A note on genetic algorithms for large-scale feature selection
    • Siedlecki W., and Sklansky J. A note on genetic algorithms for large-scale feature selection. Pattern Recognition Lett. 10 (1989) 335-347
    • (1989) Pattern Recognition Lett. , vol.10 , pp. 335-347
    • Siedlecki, W.1    Sklansky, J.2
  • 21
    • 0032028297 scopus 로고    scopus 로고
    • Feature subset selection using a genetic algorithm
    • Yang J., and Honavar V. Feature subset selection using a genetic algorithm. IEEE Intell. Systems 13 2 (1998) 44-49
    • (1998) IEEE Intell. Systems , vol.13 , Issue.2 , pp. 44-49
    • Yang, J.1    Honavar, V.2
  • 22
    • 36749045389 scopus 로고    scopus 로고
    • P. Pudil, F.J. Ferri, J. Novovičová, J. Kittler, Floating search methods for feature selection with nonmonotonic criterion functions, in: 12th International Conference on Pattern Recognition, 1994, pp. 279-283.
  • 23
    • 84948597805 scopus 로고
    • A comparison of seven techniques for choosing subsets of pattern recognition properties
    • Mucciardi A.N., and Gose E.E. A comparison of seven techniques for choosing subsets of pattern recognition properties. IEEE Trans. Computers c-20 9 (1971) 1023-1031
    • (1971) IEEE Trans. Computers , vol.c-20 , Issue.9 , pp. 1023-1031
    • Mucciardi, A.N.1    Gose, E.E.2
  • 27
    • 36749053667 scopus 로고    scopus 로고
    • ∼mlearn/MLRepository.html〉, 1998.


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.