-
2
-
-
33646009146
-
Stationary subdivision schemes reproducing polynomials
-
Choi S.W., Lee B.-G., Lee Y.J., and Yoon J. Stationary subdivision schemes reproducing polynomials. Comput. Aided Geom. Design 23 4 (2006) 351-360
-
(2006)
Comput. Aided Geom. Design
, vol.23
, Issue.4
, pp. 351-360
-
-
Choi, S.W.1
Lee, B.-G.2
Lee, Y.J.3
Yoon, J.4
-
3
-
-
0242573570
-
Framelets: MRA-based constructions of wavelet frames
-
Daubechies I., Han B., Ron A., and Shen Z. Framelets: MRA-based constructions of wavelet frames. Appl. Comput. Harmon. Anal. 14 1 (2003) 1-46
-
(2003)
Appl. Comput. Harmon. Anal.
, vol.14
, Issue.1
, pp. 1-46
-
-
Daubechies, I.1
Han, B.2
Ron, A.3
Shen, Z.4
-
4
-
-
34249975165
-
Symmetric iterative interpolation processes
-
Deslauriers G., and Dubuc S. Symmetric iterative interpolation processes. Constr. Approx. 5 1 (1989) 49-68
-
(1989)
Constr. Approx.
, vol.5
, Issue.1
, pp. 49-68
-
-
Deslauriers, G.1
Dubuc, S.2
-
5
-
-
33751021679
-
Pseudo-splines, wavelets and framelets
-
Dong B., and Shen Z. Pseudo-splines, wavelets and framelets. Appl. Comput. Harmon. Anal. 22 1 (2007) 78-104
-
(2007)
Appl. Comput. Harmon. Anal.
, vol.22
, Issue.1
, pp. 78-104
-
-
Dong, B.1
Shen, Z.2
-
6
-
-
0022663198
-
Interpolation through an iterative scheme
-
Dubuc S. Interpolation through an iterative scheme. J. Math. Anal. Appl. 114 1 (1986) 185-204
-
(1986)
J. Math. Anal. Appl.
, vol.114
, Issue.1
, pp. 185-204
-
-
Dubuc, S.1
-
7
-
-
0001821903
-
Subdivision schemes in computer-aided geometric design
-
Advances in Numerical Analysis. Light W. (Ed), Oxford University Press, New York
-
Dyn N. Subdivision schemes in computer-aided geometric design. In: Light W. (Ed). Advances in Numerical Analysis. Oxford Science Publications vol. II (1992), Oxford University Press, New York 36-104
-
(1992)
Oxford Science Publications
, vol.II
, pp. 36-104
-
-
Dyn, N.1
-
8
-
-
3142668470
-
Analysis of convergence and smoothness by the formalism of Laurent polynomials
-
Iske A., Quak E., and Floater M.S. (Eds), Springer, Berlin, Heidelberg
-
Dyn N. Analysis of convergence and smoothness by the formalism of Laurent polynomials. In: Iske A., Quak E., and Floater M.S. (Eds). Tutorials on Multiresolution in Geometric Modelling. Mathematics and Visualization (2002), Springer, Berlin, Heidelberg 51-68
-
(2002)
Tutorials on Multiresolution in Geometric Modelling. Mathematics and Visualization
, pp. 51-68
-
-
Dyn, N.1
-
9
-
-
33845385907
-
Interpolatory subdivision schemes
-
Iske A., Quak E., and Floater M.S. (Eds), Springer, Berlin, Heidelberg
-
Dyn N. Interpolatory subdivision schemes. In: Iske A., Quak E., and Floater M.S. (Eds). Tutorials on Multiresolution in Geometric Modelling. Mathematics and Visualization (2002), Springer, Berlin, Heidelberg 25-50
-
(2002)
Tutorials on Multiresolution in Geometric Modelling. Mathematics and Visualization
, pp. 25-50
-
-
Dyn, N.1
-
10
-
-
33747733317
-
2 four-point subdivision scheme with fourth order accuracy and its extensions
-
Dæhlen M., Mørken K., and Schumaker L.L. (Eds). Tromsø 2004, Nashboro Press, Brentwood, TN
-
2 four-point subdivision scheme with fourth order accuracy and its extensions. In: Dæhlen M., Mørken K., and Schumaker L.L. (Eds). Mathematical Methods for Curves and Surfaces, Modern Methods in Mathematics. Tromsø 2004 (2005), Nashboro Press, Brentwood, TN 145-156
-
(2005)
Mathematical Methods for Curves and Surfaces, Modern Methods in Mathematics
, pp. 145-156
-
-
Dyn, N.1
Floater, M.S.2
Hormann, K.3
-
11
-
-
0023597654
-
A 4-point interpolatory subdivision scheme for curve design
-
Dyn N., Gregory J.A., and Levin D. A 4-point interpolatory subdivision scheme for curve design. Comput. Aided Geom. Design 4 4 (1987) 257-268
-
(1987)
Comput. Aided Geom. Design
, vol.4
, Issue.4
, pp. 257-268
-
-
Dyn, N.1
Gregory, J.A.2
Levin, D.3
-
12
-
-
85095851103
-
Subdivision schemes in geometric modelling
-
Dyn N., and Levin D. Subdivision schemes in geometric modelling. Acta Numerica 11 (2002) 73-144
-
(2002)
Acta Numerica
, vol.11
, pp. 73-144
-
-
Dyn, N.1
Levin, D.2
-
14
-
-
21844487357
-
The finiteness conjecture for the generalized spectral radius of a set of matrices
-
Lagarias J.C., and Wang Y. The finiteness conjecture for the generalized spectral radius of a set of matrices. Linear Algebra Appl. 214 1 (1995) 17-42
-
(1995)
Linear Algebra Appl.
, vol.214
, Issue.1
, pp. 17-42
-
-
Lagarias, J.C.1
Wang, Y.2
-
15
-
-
0018919175
-
A theoretical development for the computer generation and display of piecewise polynomial surfaces
-
Lane J.M., and Riesenfeld R.F. A theoretical development for the computer generation and display of piecewise polynomial surfaces. IEEE Trans. Pattern Anal. Mach. Intell. 2 1 (1980) 35-46
-
(1980)
IEEE Trans. Pattern Anal. Mach. Intell.
, vol.2
, Issue.1
, pp. 35-46
-
-
Lane, J.M.1
Riesenfeld, R.F.2
-
16
-
-
0037340319
-
Polynomial generation and quasi-interpolation in stationary non-uniform subdivision
-
Levin A. Polynomial generation and quasi-interpolation in stationary non-uniform subdivision. Comput. Aided Geom. Design 20 1 (2003) 41-60
-
(2003)
Comput. Aided Geom. Design
, vol.20
, Issue.1
, pp. 41-60
-
-
Levin, A.1
-
17
-
-
21144481833
-
Simple regularity criteria for subdivision schemes
-
Rioul O. Simple regularity criteria for subdivision schemes. SIAM J. Math. Anal. 23 6 (1992) 1544-1576
-
(1992)
SIAM J. Math. Anal.
, vol.23
, Issue.6
, pp. 1544-1576
-
-
Rioul, O.1
-
18
-
-
33646129472
-
Artifacts in box-spline surfaces
-
Mathematics of Surfaces XI. Martin R., Bez H., and Sabin M.A. (Eds), Springer, Berlin
-
Sabin M.A., Augsdörfer U.H., and Dodgson N.A. Artifacts in box-spline surfaces. In: Martin R., Bez H., and Sabin M.A. (Eds). Mathematics of Surfaces XI. Lecture Notes in Computer Science vol. 3604 (2005), Springer, Berlin 350-363
-
(2005)
Lecture Notes in Computer Science
, vol.3604
, pp. 350-363
-
-
Sabin, M.A.1
Augsdörfer, U.H.2
Dodgson, N.A.3
-
19
-
-
33746246973
-
A circle-preserving variant of the four-point subdivision scheme
-
Dæhlen M., Mørken K., and Schumaker L.L. (Eds). Tromsø 2004, Nashboro Press, Brentwood, TN
-
Sabin M.A., and Dodgson N.A. A circle-preserving variant of the four-point subdivision scheme. In: Dæhlen M., Mørken K., and Schumaker L.L. (Eds). Mathematical Methods for Curves and Surfaces, Modern Methods in Mathematics. Tromsø 2004 (2005), Nashboro Press, Brentwood, TN 275-286
-
(2005)
Mathematical Methods for Curves and Surfaces, Modern Methods in Mathematics
, pp. 275-286
-
-
Sabin, M.A.1
Dodgson, N.A.2
-
20
-
-
0035276530
-
Smooth wavelet tight frames with zero moments
-
Selesnick I.W. Smooth wavelet tight frames with zero moments. Appl. Comput. Harmon. Anal. 10 2 (2001) 163-181
-
(2001)
Appl. Comput. Harmon. Anal.
, vol.10
, Issue.2
, pp. 163-181
-
-
Selesnick, I.W.1
|