-
1
-
-
11844258237
-
Symmetric nearly shift-invariant tight frame wavelets
-
Abdelnour A.F., and Selesnick I.W. Symmetric nearly shift-invariant tight frame wavelets. IEEE Trans. Signal Process. 53 1 (2005) 231-239
-
(2005)
IEEE Trans. Signal Process.
, vol.53
, Issue.1
, pp. 231-239
-
-
Abdelnour, A.F.1
Selesnick, I.W.2
-
3
-
-
21344488909
-
On the construction of multivariate (pre)wavelets
-
de Boor C., DeVore R., and Ron A. On the construction of multivariate (pre)wavelets. Constr. Approx. 9 (1993) 123-166
-
(1993)
Constr. Approx.
, vol.9
, pp. 123-166
-
-
de Boor, C.1
DeVore, R.2
Ron, A.3
-
4
-
-
0000032696
-
Régularité des bases d'ondelettes et mesures ergodiques
-
Cohen A., and Conze J.P. Régularité des bases d'ondelettes et mesures ergodiques. Rev. Mat. Iberoamericana 8 (1992) 351-365
-
(1992)
Rev. Mat. Iberoamericana
, vol.8
, pp. 351-365
-
-
Cohen, A.1
Conze, J.P.2
-
5
-
-
84974002026
-
A stability criterion for biorthogonal wavelet bases and their related subband coding scheme
-
Cohen A., and Daubechies I. A stability criterion for biorthogonal wavelet bases and their related subband coding scheme. Duke Math. J. 68 2 (1992) 313-335
-
(1992)
Duke Math. J.
, vol.68
, Issue.2
, pp. 313-335
-
-
Cohen, A.1
Daubechies, I.2
-
7
-
-
0000238947
-
Compactly supported tight frames associated with refinable functions
-
Chui C.K., and He W. Compactly supported tight frames associated with refinable functions. Appl. Comput. Harmon. Anal. 8 3 (2000) 293-319
-
(2000)
Appl. Comput. Harmon. Anal.
, vol.8
, Issue.3
, pp. 293-319
-
-
Chui, C.K.1
He, W.2
-
11
-
-
84990575058
-
Orthonormal bases of compactly supported wavelets
-
Daubechies I. Orthonormal bases of compactly supported wavelets. Comm. Pure Appl. Math. 41 (1988) 909-996
-
(1988)
Comm. Pure Appl. Math.
, vol.41
, pp. 909-996
-
-
Daubechies, I.1
-
12
-
-
0242573570
-
Framelets: MRA-based constructions of wavelet frames
-
Daubechies I., Han B., Ron A., and Shen Z. Framelets: MRA-based constructions of wavelet frames. Appl. Comput. Harmon. Anal. 14 1 (2003) 1-46
-
(2003)
Appl. Comput. Harmon. Anal.
, vol.14
, Issue.1
, pp. 1-46
-
-
Daubechies, I.1
Han, B.2
Ron, A.3
Shen, Z.4
-
13
-
-
33748291405
-
Linear independence of pseudo-splines
-
Dong B., and Shen Z. Linear independence of pseudo-splines. Proc. Amer. Math. Soc. 139 9 (2006) 2685-2694
-
(2006)
Proc. Amer. Math. Soc.
, vol.139
, Issue.9
, pp. 2685-2694
-
-
Dong, B.1
Shen, Z.2
-
14
-
-
0022663198
-
Interpolation through an iterative scheme
-
Dubuc S. Interpolation through an iterative scheme. J. Math. Anal. Appl. 114 (1986) 185-204
-
(1986)
J. Math. Anal. Appl.
, vol.114
, pp. 185-204
-
-
Dubuc, S.1
-
16
-
-
33646080616
-
Symmetric and antisymmetric tight wavelet frames
-
Goh S., Lim Z., and Shen Z. Symmetric and antisymmetric tight wavelet frames. Appl. Comput. Harmon. Anal. 20 3 (2006) 411-421
-
(2006)
Appl. Comput. Harmon. Anal.
, vol.20
, Issue.3
, pp. 411-421
-
-
Goh, S.1
Lim, Z.2
Shen, Z.3
-
17
-
-
33750967180
-
-
B. Han, Z. Shen, Wavelets with short support, SIAM J. Math. Anal., in press
-
-
-
-
19
-
-
0033472750
-
On existence and weak stability of matrix refinable functions
-
Jiang Q.T., and Shen Z. On existence and weak stability of matrix refinable functions. Constr. Approx. 15 (1999) 337-353
-
(1999)
Constr. Approx.
, vol.15
, pp. 337-353
-
-
Jiang, Q.T.1
Shen, Z.2
-
21
-
-
51249178327
-
Factorization theorems of univariate splines on regular grids
-
Ron A. Factorization theorems of univariate splines on regular grids. Israel J. Math. 70 1 (1990) 48-68
-
(1990)
Israel J. Math.
, vol.70
, Issue.1
, pp. 48-68
-
-
Ron, A.1
-
22
-
-
0031571549
-
d): The analysis of the analysis operator
-
d): The analysis of the analysis operator. J. Funct. Anal. 148 2 (1997) 408-447
-
(1997)
J. Funct. Anal.
, vol.148
, Issue.2
, pp. 408-447
-
-
Ron, A.1
Shen, Z.2
-
23
-
-
0001480098
-
The Sobolev regularity of refinable functions
-
Ron A., and Shen Z. The Sobolev regularity of refinable functions. J. Approx. Theory 106 (2000) 185-225
-
(2000)
J. Approx. Theory
, vol.106
, pp. 185-225
-
-
Ron, A.1
Shen, Z.2
-
24
-
-
0035276530
-
Smooth wavelet tight frames with zero moments
-
Selesnick I. Smooth wavelet tight frames with zero moments. Appl. Comput. Harmon. Anal. 10 2 (2001) 163-181
-
(2001)
Appl. Comput. Harmon. Anal.
, vol.10
, Issue.2
, pp. 163-181
-
-
Selesnick, I.1
|