메뉴 건너뛰기




Volumn 43, Issue 5, 2007, Pages 1245-1256

Field-scale application of three types of neural networks to predict ground-water levels

Author keywords

Artificial neural networks; Generalized regression network; Ground water level prediction; Radial basis networks; Tampa Bay Water

Indexed keywords

ALGORITHMS; NEURAL NETWORKS; REGRESSION ANALYSIS; SIGNAL FILTERING AND PREDICTION; WATER LEVELS;

EID: 34548690772     PISSN: 1093474X     EISSN: None     Source Type: Journal    
DOI: 10.1111/j.1752-1688.2007.00107.x     Document Type: Article
Times cited : (10)

References (20)
  • 1
    • 0034174396 scopus 로고    scopus 로고
    • Artificial Neural Networks in Hydrology. II: Hydrologic Applications
    • ASCE Task Committee on Application of Artificial Neural Networks in Hydrology (Rao Govindaraju)
    • ASCE Task Committee on Application of Artificial Neural Networks in Hydrology (Rao Govindaraju), 2000. Artificial Neural Networks in Hydrology. II: Hydrologic Applications. ASCE Journal of Hydrologic Engineering 5 (2 124 137.
    • (2000) ASCE Journal of Hydrologic Engineering , vol.5 , Issue.2 , pp. 124-137
  • 2
    • 31444454927 scopus 로고    scopus 로고
    • Support Vector Machines for Nonlinear State Space Reconstruction: Application to the Great Salt Lake Time Series
    • doi:.
    • Asefa, T., M. Kemblowski, U. Lall G. Urroz, 2005. Support Vector Machines for Nonlinear State Space Reconstruction: Application to the Great Salt Lake Time Series. Water Resources Research 41 : W12422. doi :.
    • (2005) Water Resources Research , vol.41
    • Asefa, T.1    Kemblowski, M.2    Lall, U.3    Urroz, G.4
  • 4
    • 23044443211 scopus 로고    scopus 로고
    • Application of Generalized Regression Networks to Intermittent Flow Forecasting and Estimation
    • Cigizoglu, H.K., 2005. Application of Generalized Regression Networks to Intermittent Flow Forecasting and Estimation. ASCE Journal of Hydrologic Engineering 10 (4 336 341.
    • (2005) ASCE Journal of Hydrologic Engineering , vol.10 , Issue.4 , pp. 336-341
    • Cigizoglu, H.K.1
  • 5
    • 0344984214 scopus 로고    scopus 로고
    • Artificial Neural Network Approach for Predicting Transient Water Levels in a Multilayered Groundwater System under Variable State, Pumping, and Climate Conditions
    • Coppola, E., F. Szidarovszky, M. Poulton E. Charles, 2003. Artificial Neural Network Approach for Predicting Transient Water Levels in a Multilayered Groundwater System Under Variable State, Pumping, and Climate Conditions. ASCE Journal of Hydrologic Engineering 8 (6 348 360.
    • (2003) ASCE Journal of Hydrologic Engineering , vol.8 , Issue.6 , pp. 348-360
    • Coppola, E.1    Szidarovszky, F.2    Poulton, M.3    Charles, E.4
  • 6
    • 0034993945 scopus 로고    scopus 로고
    • Artificial Neural Network Modeling of Water Table Depth Fluctuations
    • Coulibaly, P., F. Anctil, R. Aravena B. Bobee, 2001. Artificial Neural Network Modeling of Water Table Depth Fluctuations. Water Resources Research 37 (4 885 896.
    • (2001) Water Resources Research , vol.37 , Issue.4 , pp. 885-896
    • Coulibaly, P.1    Anctil, F.2    Aravena, R.3    Bobee, B.4
  • 7
    • 0003396255 scopus 로고    scopus 로고
    • Online Document for Toolbox Version 4.0.4 and MATLAB Release 14SP1. MathWorks, Inc., Natick, Massachusetts.
    • Demuth, H. M Beale, 2004. Neural Network Toolbox User's Guide. Online Document for Toolbox Version 4.0.4 and MATLAB Release 14SP1. MathWorks, Inc., Natick, Massachusetts.
    • (2004) Neural Network Toolbox User's Guide.
    • Demuth, H.1    Beale, M.2
  • 10
    • 0003157339 scopus 로고
    • Robust Estimation of a Location Parameter
    • Huber, R., 1964. Robust Estimation of a Location Parameter. Annals of Mathematical Statistics 35 (1 73 101.
    • (1964) Annals of Mathematical Statistics , vol.35 , Issue.1 , pp. 73-101
    • Huber, R.1
  • 12
    • 0003748256 scopus 로고
    • Ph.D. Dissertation, California Institute of Technology, Pasadena, California.
    • MacKay, D.J.C., 1992. Bayesian Methods for Adaptive Models. Ph.D. Dissertation, California Institute of Technology, Pasadena, California.
    • (1992) Bayesian Methods for Adaptive Models.
    • MacKay, D.J.C.1
  • 14
    • 0028174533 scopus 로고
    • Optimization of Ground Water Remediation Using Artificial Neural Networks
    • Rogers, L.L. F.U. Dowla, 1994. Optimization of Ground Water Remediation Using Artificial Neural Networks. Water Resources Research 30 (2 457 481.
    • (1994) Water Resources Research , vol.30 , Issue.2 , pp. 457-481
    • Rogers, L.L.1    Dowla, F.U.2
  • 15
    • 2542511591 scopus 로고    scopus 로고
    • Generalized Regression Neural Networks in Time-Varying Environment
    • Rutkowski, L. 2004. Generalized Regression Neural Networks in Time-Varying Environment. IEEE Transactions on Neural Networks 15 (3).
    • (2004) IEEE Transactions on Neural Networks , vol.15 , Issue.3
    • Rutkowski, L.1
  • 16
    • 6344243351 scopus 로고    scopus 로고
    • Artificial Neural Network Ensembles and Their Application in Pooled Flood Frequency Analysis
    • doi:.
    • Shu, C. D. H. Burn 2004. Artificial Neural Network Ensembles and Their Application in Pooled Flood Frequency Analysis. Water Resource Research 40 : W09301. doi :.
    • (2004) Water Resource Research , vol.40
    • Shu, C.1    Burn, D.H.2
  • 17
    • 0026254768 scopus 로고
    • A Generalized Regression Neural Network
    • Specht, D.F., 1991. A Generalized Regression Neural Network. IEEE Transactions on Neural Networks 2 (6 568 576.
    • (1991) IEEE Transactions on Neural Networks , vol.2 , Issue.6 , pp. 568-576
    • Specht, D.F.1
  • 18
    • 34548693686 scopus 로고    scopus 로고
    • Tampa Bay Water, Prepared for the Southwest Florida Water Management District. link to Appendix B: ftp://ftp.tampabaywater.org/websitepdfs/programs/ Appendices/AppendixB.pdf App. L: ftp://ftp.tampabaywater.org/websitepdfs/ programs/Appendices/AppendixL.pdf.
    • Tampa Bay Water, 2005. Optimized Regional Operations Plan Annual Report. Prepared for the Southwest Florida Water Management District. http://www.tampabaywater.org/programs/oropreports.aspx link to Appendix B: ftp://ftp.tampabaywater.org/websitepdfs/programs/Appendices/AppendixB.pdf App. L: ftp://ftp.tampabaywater.org/websitepdfs/programs/Appendices/AppendixL.pdf.
    • (2005) Optimized Regional Operations Plan Annual Report.
  • 20
    • 0001762424 scopus 로고
    • Smooth Regression Analysis
    • Watson, G.S., 1964. Smooth Regression Analysis. Sankhya Series A 26 : 359 372.
    • (1964) Sankhya Series a , vol.26 , pp. 359-372
    • Watson, G.S.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.