-
1
-
-
0034174396
-
Artificial Neural Networks in Hydrology. II: Hydrologic Applications
-
ASCE Task Committee on Application of Artificial Neural Networks in Hydrology (Rao Govindaraju)
-
ASCE Task Committee on Application of Artificial Neural Networks in Hydrology (Rao Govindaraju), 2000. Artificial Neural Networks in Hydrology. II: Hydrologic Applications. ASCE Journal of Hydrologic Engineering 5 (2 124 137.
-
(2000)
ASCE Journal of Hydrologic Engineering
, vol.5
, Issue.2
, pp. 124-137
-
-
-
2
-
-
31444454927
-
Support Vector Machines for Nonlinear State Space Reconstruction: Application to the Great Salt Lake Time Series
-
doi:.
-
Asefa, T., M. Kemblowski, U. Lall G. Urroz, 2005. Support Vector Machines for Nonlinear State Space Reconstruction: Application to the Great Salt Lake Time Series. Water Resources Research 41 : W12422. doi :.
-
(2005)
Water Resources Research
, vol.41
-
-
Asefa, T.1
Kemblowski, M.2
Lall, U.3
Urroz, G.4
-
3
-
-
0003833320
-
-
U.S. Environmental Protection Agency, Athens, Georgia.
-
Bicknell, B., J.C. Imhoff, J.L. Kittle, Jr., T. H. Jobes A.D. Donigian, Jr., 2001. Hydrological Simulation Program - FORTRAN (HSPF): User's Manual for Version 12. U.S. Environmental Protection Agency, Athens, Georgia.
-
(2001)
Hydrological Simulation Program - FORTRAN (HSPF): User's Manual for Version 12.
-
-
Bicknell, B.1
Imhoff, J.C.2
Kittle Jr., J.L.3
Jobes, T.H.4
Donigian Jr., A.D.5
-
4
-
-
23044443211
-
Application of Generalized Regression Networks to Intermittent Flow Forecasting and Estimation
-
Cigizoglu, H.K., 2005. Application of Generalized Regression Networks to Intermittent Flow Forecasting and Estimation. ASCE Journal of Hydrologic Engineering 10 (4 336 341.
-
(2005)
ASCE Journal of Hydrologic Engineering
, vol.10
, Issue.4
, pp. 336-341
-
-
Cigizoglu, H.K.1
-
5
-
-
0344984214
-
Artificial Neural Network Approach for Predicting Transient Water Levels in a Multilayered Groundwater System under Variable State, Pumping, and Climate Conditions
-
Coppola, E., F. Szidarovszky, M. Poulton E. Charles, 2003. Artificial Neural Network Approach for Predicting Transient Water Levels in a Multilayered Groundwater System Under Variable State, Pumping, and Climate Conditions. ASCE Journal of Hydrologic Engineering 8 (6 348 360.
-
(2003)
ASCE Journal of Hydrologic Engineering
, vol.8
, Issue.6
, pp. 348-360
-
-
Coppola, E.1
Szidarovszky, F.2
Poulton, M.3
Charles, E.4
-
6
-
-
0034993945
-
Artificial Neural Network Modeling of Water Table Depth Fluctuations
-
Coulibaly, P., F. Anctil, R. Aravena B. Bobee, 2001. Artificial Neural Network Modeling of Water Table Depth Fluctuations. Water Resources Research 37 (4 885 896.
-
(2001)
Water Resources Research
, vol.37
, Issue.4
, pp. 885-896
-
-
Coulibaly, P.1
Anctil, F.2
Aravena, R.3
Bobee, B.4
-
7
-
-
0003396255
-
-
Online Document for Toolbox Version 4.0.4 and MATLAB Release 14SP1. MathWorks, Inc., Natick, Massachusetts.
-
Demuth, H. M Beale, 2004. Neural Network Toolbox User's Guide. Online Document for Toolbox Version 4.0.4 and MATLAB Release 14SP1. MathWorks, Inc., Natick, Massachusetts.
-
(2004)
Neural Network Toolbox User's Guide.
-
-
Demuth, H.1
Beale, M.2
-
9
-
-
0003684449
-
-
Springer-Verlag, Canada.
-
Hastie, T., R. Tibshirani J. Friedman, 2001. The Elements of Statistical Learning: Data Mining, Inference and Prediction. Springer-Verlag, Canada.
-
(2001)
The Elements of Statistical Learning: Data Mining, Inference and Prediction.
-
-
Hastie, T.1
Tibshirani, R.2
Friedman, J.3
-
10
-
-
0003157339
-
Robust Estimation of a Location Parameter
-
Huber, R., 1964. Robust Estimation of a Location Parameter. Annals of Mathematical Statistics 35 (1 73 101.
-
(1964)
Annals of Mathematical Statistics
, vol.35
, Issue.1
, pp. 73-101
-
-
Huber, R.1
-
12
-
-
0003748256
-
-
Ph.D. Dissertation, California Institute of Technology, Pasadena, California.
-
MacKay, D.J.C., 1992. Bayesian Methods for Adaptive Models. Ph.D. Dissertation, California Institute of Technology, Pasadena, California.
-
(1992)
Bayesian Methods for Adaptive Models.
-
-
MacKay, D.J.C.1
-
14
-
-
0028174533
-
Optimization of Ground Water Remediation Using Artificial Neural Networks
-
Rogers, L.L. F.U. Dowla, 1994. Optimization of Ground Water Remediation Using Artificial Neural Networks. Water Resources Research 30 (2 457 481.
-
(1994)
Water Resources Research
, vol.30
, Issue.2
, pp. 457-481
-
-
Rogers, L.L.1
Dowla, F.U.2
-
15
-
-
2542511591
-
Generalized Regression Neural Networks in Time-Varying Environment
-
Rutkowski, L. 2004. Generalized Regression Neural Networks in Time-Varying Environment. IEEE Transactions on Neural Networks 15 (3).
-
(2004)
IEEE Transactions on Neural Networks
, vol.15
, Issue.3
-
-
Rutkowski, L.1
-
16
-
-
6344243351
-
Artificial Neural Network Ensembles and Their Application in Pooled Flood Frequency Analysis
-
doi:.
-
Shu, C. D. H. Burn 2004. Artificial Neural Network Ensembles and Their Application in Pooled Flood Frequency Analysis. Water Resource Research 40 : W09301. doi :.
-
(2004)
Water Resource Research
, vol.40
-
-
Shu, C.1
Burn, D.H.2
-
17
-
-
0026254768
-
A Generalized Regression Neural Network
-
Specht, D.F., 1991. A Generalized Regression Neural Network. IEEE Transactions on Neural Networks 2 (6 568 576.
-
(1991)
IEEE Transactions on Neural Networks
, vol.2
, Issue.6
, pp. 568-576
-
-
Specht, D.F.1
-
18
-
-
34548693686
-
-
Tampa Bay Water, Prepared for the Southwest Florida Water Management District. link to Appendix B: ftp://ftp.tampabaywater.org/websitepdfs/programs/ Appendices/AppendixB.pdf App. L: ftp://ftp.tampabaywater.org/websitepdfs/ programs/Appendices/AppendixL.pdf.
-
Tampa Bay Water, 2005. Optimized Regional Operations Plan Annual Report. Prepared for the Southwest Florida Water Management District. http://www.tampabaywater.org/programs/oropreports.aspx link to Appendix B: ftp://ftp.tampabaywater.org/websitepdfs/programs/Appendices/AppendixB.pdf App. L: ftp://ftp.tampabaywater.org/websitepdfs/programs/Appendices/AppendixL.pdf.
-
(2005)
Optimized Regional Operations Plan Annual Report.
-
-
-
20
-
-
0001762424
-
Smooth Regression Analysis
-
Watson, G.S., 1964. Smooth Regression Analysis. Sankhya Series A 26 : 359 372.
-
(1964)
Sankhya Series a
, vol.26
, pp. 359-372
-
-
Watson, G.S.1
|