메뉴 건너뛰기




Volumn 1117, Issue , 2007, Pages 12-25

Perspective on the osteoclast: An angiogenic cell?

Author keywords

Angiogenesis; Bone; Osteoclast

Indexed keywords

ALENDRONIC ACID; ANGIOGENIC FACTOR; BISPHOSPHONIC ACID DERIVATIVE; NERIDRONIC ACID; NITROGEN; RISEDRONIC ACID; ZOLEDRONIC ACID;

EID: 36549007498     PISSN: 00778923     EISSN: 17496632     Source Type: Book Series    
DOI: 10.1196/annals.1402.073     Document Type: Conference Paper
Times cited : (18)

References (85)
  • 2
    • 33746257305 scopus 로고    scopus 로고
    • Importance of the bone marrow microenvironment in inducing the angiogenic response in multiple myeloma
    • RIBATTI, D., B. NICO & A. VACCA. 2006. Importance of the bone marrow microenvironment in inducing the angiogenic response in multiple myeloma. Oncogene 25: 4257-4266.
    • (2006) Oncogene , vol.25 , pp. 4257-4266
    • RIBATTI, D.1    NICO, B.2    VACCA, A.3
  • 3
    • 33847368961 scopus 로고    scopus 로고
    • Myeloma cell-osteoclast interaction enhances angiogenesis together with bone resorption: A role for vascular endothelial cell growth factor and osteopontin
    • TANAKA, Y. et al. 2007. Myeloma cell-osteoclast interaction enhances angiogenesis together with bone resorption: a role for vascular endothelial cell growth factor and osteopontin. Clin. Cancer Res. 13: 816-823.
    • (2007) Clin. Cancer Res , vol.13 , pp. 816-823
    • TANAKA, Y.1
  • 4
    • 33646383590 scopus 로고    scopus 로고
    • Recent advances in understanding the mechanism of action of bisphosphonates
    • COXON, F.P., K. THOMPSON & M.J. ROGERS. 2006. Recent advances in understanding the mechanism of action of bisphosphonates. Curr. Opin. Pharmacol. 6: 307-312.
    • (2006) Curr. Opin. Pharmacol , vol.6 , pp. 307-312
    • COXON, F.P.1    THOMPSON, K.2    ROGERS, M.J.3
  • 5
    • 0242308942 scopus 로고    scopus 로고
    • Zoledronic acid treatment of 5T2MM-bearing mice inhibits the development of myeloma bone disease: Evidence for decreased osteolysis, tumor burden and angiogenesis, and increased survival
    • CROUCHER, P.I. et al. 2003. Zoledronic acid treatment of 5T2MM-bearing mice inhibits the development of myeloma bone disease: evidence for decreased osteolysis, tumor burden and angiogenesis, and increased survival. J Bone Miner. Res. 18: 482-492.
    • (2003) J Bone Miner. Res , vol.18 , pp. 482-492
    • CROUCHER, P.I.1
  • 6
    • 33751551172 scopus 로고    scopus 로고
    • Dual role of macrophages in tumor growth and angiogenesis
    • LAMAGNA, C., M. AURRAND-LIONS & B. A. IMHOF. 2006. Dual role of macrophages in tumor growth and angiogenesis. J. Leukoc. Biol. 80: 705-713.
    • (2006) J. Leukoc. Biol , vol.80 , pp. 705-713
    • LAMAGNA, C.1    AURRAND-LIONS, M.2    IMHOF, B.A.3
  • 8
    • 0036217067 scopus 로고    scopus 로고
    • Bone morphogenetic proteins stimulate angiogenesis through osteoblast-derived vascular endothelial growth factor A
    • DECKERS, M.M. et al. 2002. Bone morphogenetic proteins stimulate angiogenesis through osteoblast-derived vascular endothelial growth factor A. Endocrinology 143: 1545-1553.
    • (2002) Endocrinology , vol.143 , pp. 1545-1553
    • DECKERS, M.M.1
  • 9
    • 0042333448 scopus 로고    scopus 로고
    • Bone morphogenetic protein 2 induces placental growth factor in mesenchymal stem cells
    • MARRONY, S. et al. 2003. Bone morphogenetic protein 2 induces placental growth factor in mesenchymal stem cells. Bone 33: 426-433.
    • (2003) Bone , vol.33 , pp. 426-433
    • MARRONY, S.1
  • 10
    • 0036153327 scopus 로고    scopus 로고
    • Induction of vascular endothelial growth factor by IGF-I in osteoblast-like cells is mediated by the PI3K signaling pathway through the hypoxia-inducible factor-2alpha
    • AKENO, N. et al. 2002. Induction of vascular endothelial growth factor by IGF-I in osteoblast-like cells is mediated by the PI3K signaling pathway through the hypoxia-inducible factor-2alpha. Endocrinology 143: 420-425.
    • (2002) Endocrinology , vol.143 , pp. 420-425
    • AKENO, N.1
  • 11
    • 0028263883 scopus 로고
    • Induction of vascular endothelial growth factor expression by prostaglandin E2 and E1 in osteoblasts
    • HARADA, S. et al. 1994. Induction of vascular endothelial growth factor expression by prostaglandin E2 and E1 in osteoblasts. J. Clin. Invest. 93: 2490-2496.
    • (1994) J. Clin. Invest , vol.93 , pp. 2490-2496
    • HARADA, S.1
  • 12
    • 4444264480 scopus 로고    scopus 로고
    • Angiotensin II, cell proliferation and angiogenesis regulator: Biologic and therapeutic implications in cancer
    • ESCOBAR, E. et al. 2004. Angiotensin II, cell proliferation and angiogenesis regulator: biologic and therapeutic implications in cancer. Curr. Vasc. Pharmacol. 2: 385-399.
    • (2004) Curr. Vasc. Pharmacol , vol.2 , pp. 385-399
    • ESCOBAR, E.1
  • 13
    • 33750074755 scopus 로고    scopus 로고
    • Hypoxia increases VEGF-A production by prostate cancer and bone marrow stromal cells and initiates paracrine activation of bone marrow endothelial cells
    • MUIR, C. et al. 2006. Hypoxia increases VEGF-A production by prostate cancer and bone marrow stromal cells and initiates paracrine activation of bone marrow endothelial cells. Clin. Exp. Metas. 23: 75-86.
    • (2006) Clin. Exp. Metas , vol.23 , pp. 75-86
    • MUIR, C.1
  • 14
    • 34249913494 scopus 로고    scopus 로고
    • The hypoxia-inducible factor alpha pathway couples angiogenesis to osteogenesis during skeletal development
    • WANG, Y. et al. 2007. The hypoxia-inducible factor alpha pathway couples angiogenesis to osteogenesis during skeletal development. J. Clin. Invest. 117: 1616-1626.
    • (2007) J. Clin. Invest , vol.117 , pp. 1616-1626
    • WANG, Y.1
  • 15
    • 0036292918 scopus 로고    scopus 로고
    • Factors in the fracture microenvironment induce primary osteoblast angiogenic cytokine production
    • BOULETREAU, P.J. et al. 2002. Factors in the fracture microenvironment induce primary osteoblast angiogenic cytokine production. Plast. Reconstr. Surg. 110: 139-148.
    • (2002) Plast. Reconstr. Surg , vol.110 , pp. 139-148
    • BOULETREAU, P.J.1
  • 16
    • 0034102528 scopus 로고    scopus 로고
    • Cortisol inhibits hepatocyte growth factor/scatter factor expression and induces c-met transcripts in osteoblasts
    • BLANQUAERT, F., R.C. PEREIRA & E. CANALIS. 2000. Cortisol inhibits hepatocyte growth factor/scatter factor expression and induces c-met transcripts in osteoblasts. Am. J. Physiol. Endocrinol. Metab. 278: E509-E515.
    • (2000) Am. J. Physiol. Endocrinol. Metab , vol.278
    • BLANQUAERT, F.1    PEREIRA, R.C.2    CANALIS, E.3
  • 17
    • 0038172625 scopus 로고    scopus 로고
    • Involvement of MAP kinases in TGF-[beta]-stimulated vascular endothelial growth factor synthesis in osteoblasts
    • TOKUDA, H. et al. 2003. Involvement of MAP kinases in TGF-[beta]-stimulated vascular endothelial growth factor synthesis in osteoblasts. Arch. Biochem. Biophys. 415: 117-125.
    • (2003) Arch. Biochem. Biophys , vol.415 , pp. 117-125
    • TOKUDA, H.1
  • 18
    • 34247363201 scopus 로고    scopus 로고
    • Expression of angiopoietin-1 in osteoblasts and its inhibition by tumor necrosis factor-alpha and interferon-gamma
    • KASAMA, T. et al. 2007. Expression of angiopoietin-1 in osteoblasts and its inhibition by tumor necrosis factor-alpha and interferon-gamma. Trans. Res. 149: 265-273.
    • (2007) Trans. Res , vol.149 , pp. 265-273
    • KASAMA, T.1
  • 21
    • 0003084713 scopus 로고
    • The structural relationship of bone forming and endothelial cells of the bone marrow
    • J. Arlet, R.P. Ficat & D.S. Hungerford, Eds, Williams & Wilkins, Baltimore, MD
    • BURKHARDT, R. et al. 1984. The structural relationship of bone forming and endothelial cells of the bone marrow. In Bone Circulation. J. Arlet, R.P. Ficat & D.S. Hungerford, Eds.: 2-14. Williams & Wilkins, Baltimore, MD.
    • (1984) Bone Circulation , pp. 2-14
    • BURKHARDT, R.1
  • 22
    • 0034874481 scopus 로고    scopus 로고
    • Cancellous bone remodeling occurs in specialized compartments lined by cells expressing osteoblastic markers
    • HAUGE, E.M. et al. 2001. Cancellous bone remodeling occurs in specialized compartments lined by cells expressing osteoblastic markers. J. Bone Miner. Res. 16: 1575-1582.
    • (2001) J. Bone Miner. Res , vol.16 , pp. 1575-1582
    • HAUGE, E.M.1
  • 23
    • 0034166650 scopus 로고    scopus 로고
    • The mechanism of coupling: A role for the vasculature
    • PARFITT, A.M. 2000. The mechanism of coupling: a role for the vasculature. Bone 26: 319-323.
    • (2000) Bone , vol.26 , pp. 319-323
    • PARFITT, A.M.1
  • 24
    • 2942523836 scopus 로고    scopus 로고
    • Anatomy and biology of bone matrix and cellular elements
    • M.J. Flauus, Ed, American Society for Bone and Mineral Research. Washington, DC
    • BARON, R. 2003. Anatomy and biology of bone matrix and cellular elements. In Primer on the Metabolic Bone Diseases and Disorders of Mineral Metabolism. M.J. Flauus, Ed.: 1-8. American Society for Bone and Mineral Research. Washington, DC.
    • (2003) Primer on the Metabolic Bone Diseases and Disorders of Mineral Metabolism , pp. 1-8
    • BARON, R.1
  • 25
    • 0035947764 scopus 로고    scopus 로고
    • Circulating skeletal stem cells
    • KUZNETSOV, S.A. et al. 2001. Circulating skeletal stem cells. J. Cell Biol. 153: 1133-1140.
    • (2001) J. Cell Biol , vol.153 , pp. 1133-1140
    • KUZNETSOV, S.A.1
  • 26
    • 0034645060 scopus 로고    scopus 로고
    • Matrix metalloproteinase 9 and vascular endothelial growth factor are essential for osteoclast recruitment into developing long bones
    • ENGSIG, M.T. et al. 2000. Matrix metalloproteinase 9 and vascular endothelial growth factor are essential for osteoclast recruitment into developing long bones. J. Cell Biol. 151: 879-890.
    • (2000) J. Cell Biol , vol.151 , pp. 879-890
    • ENGSIG, M.T.1
  • 27
    • 0037162547 scopus 로고    scopus 로고
    • Vascular endothelial growth factor stimulates bone repair by promoting angiogenesis and bone turnover
    • STREET, J. et al. 2002. Vascular endothelial growth factor stimulates bone repair by promoting angiogenesis and bone turnover. PNAS 99: 9656-9661.
    • (2002) PNAS , vol.99 , pp. 9656-9661
    • STREET, J.1
  • 28
    • 0033029158 scopus 로고    scopus 로고
    • Spatial and temporal distribution of CD44 and osteopontin in fracture callus
    • YAMAZAKI, M. et al. 1999. Spatial and temporal distribution of CD44 and osteopontin in fracture callus. J. Bone Joint Surg. Br. 81: 508-515.
    • (1999) J. Bone Joint Surg. Br , vol.81 , pp. 508-515
    • YAMAZAKI, M.1
  • 29
    • 0027937391 scopus 로고
    • Localization of the mRNA for bone matrix proteins during fracture healing as determined by in situ hybridization
    • HIRAKAWA, K. et al. 1994. Localization of the mRNA for bone matrix proteins during fracture healing as determined by in situ hybridization. J. Bone Miner. Res. 9: 1551-1557.
    • (1994) J. Bone Miner. Res , vol.9 , pp. 1551-1557
    • HIRAKAWA, K.1
  • 30
    • 33846466474 scopus 로고    scopus 로고
    • Impaired angiogenesis, early callus formation, and late stage remodeling in fracture healing of osteopontin-deficient mice
    • DUVALL, C.L. et al. 2007. Impaired angiogenesis, early callus formation, and late stage remodeling in fracture healing of osteopontin-deficient mice. J. Bone Miner. Res. 22: 286-297.
    • (2007) J. Bone Miner. Res , vol.22 , pp. 286-297
    • DUVALL, C.L.1
  • 31
    • 0347473795 scopus 로고    scopus 로고
    • Heparanase mRNA expression during fracture repair in mice
    • SAIJO, M. et al. 2003. Heparanase mRNA expression during fracture repair in mice. Histochem. Cell Biol. 120: 493-503.
    • (2003) Histochem. Cell Biol , vol.120 , pp. 493-503
    • SAIJO, M.1
  • 32
    • 24144502942 scopus 로고    scopus 로고
    • Mechanisms of bone loss in rheumatoid arthritis
    • FINDLAY, D.M. & D.R. HAYNES. 2005. Mechanisms of bone loss in rheumatoid arthritis. Mod. Rheumatol. 15: 232-240.
    • (2005) Mod. Rheumatol , vol.15 , pp. 232-240
    • FINDLAY, D.M.1    HAYNES, D.R.2
  • 33
    • 0036786256 scopus 로고    scopus 로고
    • Basic fibroblast growth factor stimulates osteoclast recruitment, development, and bone pit resorption in association with angiogenesis in vivo on the chick chorioallantoic membrane and activates isolated avian osteoclast resorption in vitro
    • COLLIN-OSDOBY, P. et al. 2002. Basic fibroblast growth factor stimulates osteoclast recruitment, development, and bone pit resorption in association with angiogenesis in vivo on the chick chorioallantoic membrane and activates isolated avian osteoclast resorption in vitro. J. Bone Miner. Res. 17: 1859-1871.
    • (2002) J. Bone Miner. Res , vol.17 , pp. 1859-1871
    • COLLIN-OSDOBY, P.1
  • 34
    • 0034095064 scopus 로고    scopus 로고
    • Decreased nitric oxide levels stimulate osteoclastogenesis and bone resorption both in vitro and in vivo on the chick chorioallantoic membrane in association with neoangiogenesis
    • COLLIN-OSDOBY, P. et al. 2000. Decreased nitric oxide levels stimulate osteoclastogenesis and bone resorption both in vitro and in vivo on the chick chorioallantoic membrane in association with neoangiogenesis. J. Bone Miner. Res. 15: 474-488.
    • (2000) J. Bone Miner. Res , vol.15 , pp. 474-488
    • COLLIN-OSDOBY, P.1
  • 35
    • 0035827692 scopus 로고    scopus 로고
    • Receptor activator of NF-kappa B and osteoprotegerin expression by human microvascular endothelial cells, regulation by inflammatory cytokines, and role in human osteoclastogenesis
    • COLLIN-OSDOBY, P. et al. 2001. Receptor activator of NF-kappa B and osteoprotegerin expression by human microvascular endothelial cells, regulation by inflammatory cytokines, and role in human osteoclastogenesis. J. Biol. Chem. 276: 20659-20672.
    • (2001) J. Biol. Chem , vol.276 , pp. 20659-20672
    • COLLIN-OSDOBY, P.1
  • 36
    • 33144480718 scopus 로고    scopus 로고
    • Human microvascular endothelial cell activation by IL-1 and TNF-alpha stimulates the adhesion and transendothelial migration of circulating human CD14+ monocytes that develop with RANKL into functional osteoclasts
    • KINDLE, L. et al. 2006. Human microvascular endothelial cell activation by IL-1 and TNF-alpha stimulates the adhesion and transendothelial migration of circulating human CD14+ monocytes that develop with RANKL into functional osteoclasts. J. Bone Miner. Res. 21: 193-206.
    • (2006) J. Bone Miner. Res , vol.21 , pp. 193-206
    • KINDLE, L.1
  • 37
    • 12544257644 scopus 로고    scopus 로고
    • Gorham-Stout disease- stabilization during bisphosphonate treatment
    • HAMMER, F. et al. 2005. Gorham-Stout disease- stabilization during bisphosphonate treatment. J. Bone Miner. Res. 20: 350-353.
    • (2005) J. Bone Miner. Res , vol.20 , pp. 350-353
    • HAMMER, F.1
  • 38
    • 0029916277 scopus 로고    scopus 로고
    • Interleukin-6: A potential mediator of the massive osteolysis in patients with Gorham-Stout disease
    • DEVLIN, R.D., H.G. BONE, III & G.D. ROODMAN. 1996. Interleukin-6: a potential mediator of the massive osteolysis in patients with Gorham-Stout disease. J. Clin. Endocrinol. Metab. 81: 1893-1897.
    • (1996) J. Clin. Endocrinol. Metab , vol.81 , pp. 1893-1897
    • DEVLIN, R.D.1    BONE III, H.G.2    ROODMAN, G.D.3
  • 39
    • 33144465966 scopus 로고    scopus 로고
    • Gorham-Stout syndrome: A monocyte-mediated cytokine propelled disease
    • COLUCCI, S. et al. 2006. Gorham-Stout syndrome: a monocyte-mediated cytokine propelled disease. J. Bone Miner. Res. 21: 207-218.
    • (2006) J. Bone Miner. Res , vol.21 , pp. 207-218
    • COLUCCI, S.1
  • 40
    • 0037480835 scopus 로고    scopus 로고
    • Proangiogenic properties of human myeloma cells: Production of angiopoietin-1 and its potential relationship to myeloma-induced angiogenesis
    • GIULIANI, N. et al. 2003. Proangiogenic properties of human myeloma cells: production of angiopoietin-1 and its potential relationship to myeloma-induced angiogenesis. Blood 102: 638-645.
    • (2003) Blood , vol.102 , pp. 638-645
    • GIULIANI, N.1
  • 41
    • 28544451084 scopus 로고    scopus 로고
    • Human myeloma cells express the bone regulating gene Runx2//Cbfa1 and produce osteopontin that is involved in angiogenesis in multiple myeloma patients
    • COLLA, S. et al. 2005. Human myeloma cells express the bone regulating gene Runx2//Cbfa1 and produce osteopontin that is involved in angiogenesis in multiple myeloma patients. Leukemia 19: 2166-2176.
    • (2005) Leukemia , vol.19 , pp. 2166-2176
    • COLLA, S.1
  • 42
    • 6344258588 scopus 로고    scopus 로고
    • The role of osteopontin in tumor metastasis
    • WAI, P.Y. & P.C. KUO. 2004. The role of osteopontin in tumor metastasis. J. Surg. Res. 121: 228-241.
    • (2004) J. Surg. Res , vol.121 , pp. 228-241
    • WAI, P.Y.1    KUO, P.C.2
  • 43
    • 34548058081 scopus 로고    scopus 로고
    • Systems level analysis of osteoclastogenesis reveals intrinsic and extrinsic regulatory interactions
    • KIESEL, K. et al. 2007. Systems level analysis of osteoclastogenesis reveals intrinsic and extrinsic regulatory interactions. Dev. Dynam. 236: 2181-2197.
    • (2007) Dev. Dynam , vol.236 , pp. 2181-2197
    • KIESEL, K.1
  • 44
    • 0036510762 scopus 로고    scopus 로고
    • TNF-related activation-induced cytokine (TRANCE) induces angiogenesis through the activation of Src and phospholipase C (PLC) in human endothelial cells
    • KIM, Y.M. et al. 2002. TNF-related activation-induced cytokine (TRANCE) induces angiogenesis through the activation of Src and phospholipase C (PLC) in human endothelial cells. J. Biol. Chem. 277: 6799-6805.
    • (2002) J. Biol. Chem , vol.277 , pp. 6799-6805
    • KIM, Y.M.1
  • 45
    • 5144223611 scopus 로고    scopus 로고
    • Gene array identification of osteoclast genes: Differential inhibition of osteoclastogenesis by cyclosporin A and granulocyte macrophage colony stimulating factor
    • DAY, C. et al. 2004. Gene array identification of osteoclast genes: differential inhibition of osteoclastogenesis by cyclosporin A and granulocyte macrophage colony stimulating factor. J.Cell. Biochem. 91: 303-315.
    • (2004) J.Cell. Biochem , vol.91 , pp. 303-315
    • DAY, C.1
  • 46
    • 0037077303 scopus 로고    scopus 로고
    • Transcriptional program of mouse osteoclast differentiation governed by the macrophage colony-stimulating factor and the ligand for the receptor activator of NFkappa
    • CAPPELLEN, D. et al. 2002. Transcriptional program of mouse osteoclast differentiation governed by the macrophage colony-stimulating factor and the ligand for the receptor activator of NFkappa B. J. Biol. Chem. 277: 21971-21982.
    • (2002) B. J. Biol. Chem , vol.277 , pp. 21971-21982
    • CAPPELLEN, D.1
  • 47
    • 0037174944 scopus 로고    scopus 로고
    • Large scale gene expression analysis of osteoclastogenesis in vitro and elucidation of NFAT2 as a key regulator
    • ISHIDA, N. et al. 2002. Large scale gene expression analysis of osteoclastogenesis in vitro and elucidation of NFAT2 as a key regulator. J. Biol. Chem. 277: 41147-41156.
    • (2002) J. Biol. Chem , vol.277 , pp. 41147-41156
    • ISHIDA, N.1
  • 48
    • 0038216713 scopus 로고    scopus 로고
    • Proteome analysis of secreted proteins during osteoclast differentiation using two different methods: Two-dimensional electrophoresis and isotope-coded affinity tags analysis with two-dimensional chromatography
    • KUBOTA, K., K. WAKABAYASHI & T. MATSUOKA. 2003. Proteome analysis of secreted proteins during osteoclast differentiation using two different methods: two-dimensional electrophoresis and isotope-coded affinity tags analysis with two-dimensional chromatography. Proteomics 3: 616-626.
    • (2003) Proteomics , vol.3 , pp. 616-626
    • KUBOTA, K.1    WAKABAYASHI, K.2    MATSUOKA, T.3
  • 49
    • 27144552054 scopus 로고    scopus 로고
    • Comparative study of protein and mRNA expression during osteoclastogenesis
    • CZUPALLA, C. et al. 2005. Comparative study of protein and mRNA expression during osteoclastogenesis. Proteomics 5: 3868-3875.
    • (2005) Proteomics , vol.5 , pp. 3868-3875
    • CZUPALLA, C.1
  • 50
    • 17144400724 scopus 로고    scopus 로고
    • Short communication: Identification of genes differentially expressed in osteoclast-like cells
    • NOMIYAMA, H. et al. 2005. Short communication: Identification of genes differentially expressed in osteoclast-like cells. J. Interferon Cytok. Res. 25: 227-231.
    • (2005) J. Interferon Cytok. Res , vol.25 , pp. 227-231
    • NOMIYAMA, H.1
  • 51
    • 0036375952 scopus 로고    scopus 로고
    • Gene expression profiling of osteoclast differentiation by combined suppression subtractive hybridization (SSH) and cDNA microarray analysis
    • RHO, J. et al. 2002. Gene expression profiling of osteoclast differentiation by combined suppression subtractive hybridization (SSH) and cDNA microarray analysis. DNA Cell Biol. 21: 541-549.
    • (2002) DNA Cell Biol , vol.21 , pp. 541-549
    • RHO, J.1
  • 52
    • 0023037767 scopus 로고
    • Growth factors in bone matrix. Isolation of multiple types by affinity chromatography on heparin-Sepharose
    • HAUSCHKA, P.V. et al. 1986. Growth factors in bone matrix. Isolation of multiple types by affinity chromatography on heparin-Sepharose. J. Biol. Chem. 261: 12665-12674.
    • (1986) J. Biol. Chem , vol.261 , pp. 12665-12674
    • HAUSCHKA, P.V.1
  • 53
    • 0022978337 scopus 로고
    • Cartilage-inducing factor-A. Apparent identity to transforming growth factor-beta
    • SEYEDIN, S.M. et al. 1986. Cartilage-inducing factor-A. Apparent identity to transforming growth factor-beta. J. Biol. Chem. 261: 5693-5695.
    • (1986) J. Biol. Chem , vol.261 , pp. 5693-5695
    • SEYEDIN, S.M.1
  • 54
    • 1542792345 scopus 로고
    • Modulation of type {beta} transforming growth factor activity in bone cultures by osteotropic hormones
    • PFEILSCHIFTER, J. & G.R. MUNDY. 1987. Modulation of type {beta} transforming growth factor activity in bone cultures by osteotropic hormones. PNAS 84: 2024-2028.
    • (1987) PNAS , vol.84 , pp. 2024-2028
    • PFEILSCHIFTER, J.1    MUNDY, G.R.2
  • 55
    • 0037077212 scopus 로고    scopus 로고
    • Proteolysis of latent transforming growth factor-beta (TGF-beta)-binding protein-1 by osteoclasts. A cellular mechanism for release of TGF-beta from bone matrix
    • DALLAS, S.L. et al. 2002. Proteolysis of latent transforming growth factor-beta (TGF-beta)-binding protein-1 by osteoclasts. A cellular mechanism for release of TGF-beta from bone matrix. J. Biol. Chem. 277: 21352-21360.
    • (2002) J. Biol. Chem , vol.277 , pp. 21352-21360
    • DALLAS, S.L.1
  • 56
    • 0024552873 scopus 로고
    • Activation of the bone-derived latent TGF beta complex by isolated osteoclasts
    • OREFFO, R.O.C. et al. 1989. Activation of the bone-derived latent TGF beta complex by isolated osteoclasts. Biochem. Biophys. Res. Commun. 158: 817-823.
    • (1989) Biochem. Biophys. Res. Commun , vol.158 , pp. 817-823
    • OREFFO, R.O.C.1
  • 57
    • 22344434695 scopus 로고    scopus 로고
    • Approaches to managing bone metastases from breast cancer: The role of bisphosphonates
    • MYSTAKIDOU, K. et al. 2005. Approaches to managing bone metastases from breast cancer: the role of bisphosphonates. Cancer Treat. Rev. 31: 303-311.
    • (2005) Cancer Treat. Rev , vol.31 , pp. 303-311
    • MYSTAKIDOU, K.1
  • 58
    • 0036721078 scopus 로고    scopus 로고
    • Novel antiangiogenic effects of the bisphosphonate compound zoledronic acid
    • WOOD, J. et al. 2002. Novel antiangiogenic effects of the bisphosphonate compound zoledronic acid. J. Pharmacol. Exp. Ther. 302: 1055-1061.
    • (2002) J. Pharmacol. Exp. Ther , vol.302 , pp. 1055-1061
    • WOOD, J.1
  • 59
    • 33846483160 scopus 로고    scopus 로고
    • Alendronate suppresses tumor angiogenesis by inhibiting Rho activation of endothelial cells
    • HASHIMOTO, K. et al. 2007. Alendronate suppresses tumor angiogenesis by inhibiting Rho activation of endothelial cells. Biochem. Biophys. Res. Commun. 354: 478-484.
    • (2007) Biochem. Biophys. Res. Commun , vol.354 , pp. 478-484
    • HASHIMOTO, K.1
  • 60
    • 34249877405 scopus 로고    scopus 로고
    • Neridronate inhibits angiogenesis in vitro and in vivo
    • RIBATTI, D. et al. 2007. Neridronate inhibits angiogenesis in vitro and in vivo. Clin. Rheumatol. 26: 1094-1098.
    • (2007) Clin. Rheumatol , vol.26 , pp. 1094-1098
    • RIBATTI, D.1
  • 61
    • 18644373689 scopus 로고    scopus 로고
    • Pharmacokinetics and pharmacodynamics of zoledronic acid in cancer patients with bone metastases
    • CHEN, T. et al. 2002. Pharmacokinetics and pharmacodynamics of zoledronic acid in cancer patients with bone metastases. J. Clin. Pharmacol. 42: 1228-1236.
    • (2002) J. Clin. Pharmacol , vol.42 , pp. 1228-1236
    • CHEN, T.1
  • 62
    • 0026320852 scopus 로고
    • Bisphosphonate action. Alendronate localization in rat bone and effects on osteoclast ultrastructure
    • SATO, M. et al. 1991. Bisphosphonate action. Alendronate localization in rat bone and effects on osteoclast ultrastructure. J. Clin. Invest. 88: 2095-2105.
    • (1991) J. Clin. Invest , vol.88 , pp. 2095-2105
    • SATO, M.1
  • 63
    • 23844443254 scopus 로고    scopus 로고
    • Phosphonocarboxylate inhibitors of Rab geranylgeranyl transferase disrupt the prenylation and membrane localization of Rab proteins in osteoclasts in vitro and in vivo
    • COXON, F.P. et al. 2005. Phosphonocarboxylate inhibitors of Rab geranylgeranyl transferase disrupt the prenylation and membrane localization of Rab proteins in osteoclasts in vitro and in vivo. Bone 37: 349-358.
    • (2005) Bone , vol.37 , pp. 349-358
    • COXON, F.P.1
  • 64
    • 33645086639 scopus 로고    scopus 로고
    • Current topics in pharmacological research on bone metabolism: Inhibitory effects of bisphosphonates on the differentiation and activity of osteoclasts
    • SUZUKI, K. et al. 2006. Current topics in pharmacological research on bone metabolism: inhibitory effects of bisphosphonates on the differentiation and activity of osteoclasts. J. Pharmacol. Sci. 100: 189-194.
    • (2006) J. Pharmacol. Sci , vol.100 , pp. 189-194
    • SUZUKI, K.1
  • 65
    • 28544443670 scopus 로고    scopus 로고
    • alphavbeta3 and macrophage colony-stimulating factor: Partners in osteoclast biology
    • ROSS, F.P. & S.L. TEITELBAUM. 2005. alphavbeta3 and macrophage colony-stimulating factor: partners in osteoclast biology. Immunol. Rev. 208: 88-105.
    • (2005) Immunol. Rev , vol.208 , pp. 88-105
    • ROSS, F.P.1    TEITELBAUM, S.L.2
  • 66
    • 0035209393 scopus 로고    scopus 로고
    • Inhibition of bone resorption by alendronate and risedronate does not require osteoclast apoptosis
    • HALASY-NAGY, J.M., G.A. RODAN & A.A. RESZKA. 2001. Inhibition of bone resorption by alendronate and risedronate does not require osteoclast apoptosis. Bone 29: 553-559.
    • (2001) Bone , vol.29 , pp. 553-559
    • HALASY-NAGY, J.M.1    RODAN, G.A.2    RESZKA, A.A.3
  • 67
    • 28544442510 scopus 로고    scopus 로고
    • Circulating osteoclast precursors: A mechanism and a marker of erosive arthritis
    • XING, L. & E. SCHWARZ. 2005. Circulating osteoclast precursors: a mechanism and a marker of erosive arthritis. Curr. Rheumatol. Rev. 1: 21-28.
    • (2005) Curr. Rheumatol. Rev , vol.1 , pp. 21-28
    • XING, L.1    SCHWARZ, E.2
  • 68
    • 0033398996 scopus 로고    scopus 로고
    • Commitment and differentiation of osteoclast precursor cells by the sequential expression of c-Fms and receptor activator of nuclear factor {kappa}B (RANK) receptors
    • ARAI, F. et al. 1999. Commitment and differentiation of osteoclast precursor cells by the sequential expression of c-Fms and receptor activator of nuclear factor {kappa}B (RANK) receptors. J. Exp. Med. 190: 1741-1754.
    • (1999) J. Exp. Med , vol.190 , pp. 1741-1754
    • ARAI, F.1
  • 69
    • 0033405817 scopus 로고    scopus 로고
    • Macrophage responses to hypoxia: Relevance to disease mechanisms
    • LEWIS, J.S. et al. 1999. Macrophage responses to hypoxia: relevance to disease mechanisms. J. Leukoc. Biol. 66: 889-900.
    • (1999) J. Leukoc. Biol , vol.66 , pp. 889-900
    • LEWIS, J.S.1
  • 70
    • 0345118952 scopus 로고    scopus 로고
    • Genetic amplification of the transcriptional response to hypoxia as a novel means of identifying regulators of angiogenesis
    • WHITE, J.R. et al. 2004. Genetic amplification of the transcriptional response to hypoxia as a novel means of identifying regulators of angiogenesis. Genomics 83: 1-8.
    • (2004) Genomics , vol.83 , pp. 1-8
    • WHITE, J.R.1
  • 71
    • 0029070920 scopus 로고
    • Hypoxia-mediated induction of acidic/basic fibroblast growth factor and platelet-derived growth factor in mononuclear phagocytes stimulates growth of hypoxic endothelial cells
    • KUWABARA, K. et al. 1995. Hypoxia-mediated induction of acidic/basic fibroblast growth factor and platelet-derived growth factor in mononuclear phagocytes stimulates growth of hypoxic endothelial cells. Proc. Natl. Acad. Sci. USA 92: 4606-4610.
    • (1995) Proc. Natl. Acad. Sci. USA , vol.92 , pp. 4606-4610
    • KUWABARA, K.1
  • 72
    • 0031876304 scopus 로고    scopus 로고
    • Production of vascular endothelial growth factor by murine macrophages: Regulation by hypoxia, lactate, and the inducible nitric oxide synthase pathway
    • XIONG, M. et al. 1998. Production of vascular endothelial growth factor by murine macrophages: regulation by hypoxia, lactate, and the inducible nitric oxide synthase pathway. Am. J. Pathol. 153: 587-598.
    • (1998) Am. J. Pathol , vol.153 , pp. 587-598
    • XIONG, M.1
  • 73
    • 0023192006 scopus 로고
    • Macrophage-induced angiogenesis is mediated by tumour necrosis factor-[alpha]
    • LEIBOVICH, S.J. et al. 1987. Macrophage-induced angiogenesis is mediated by tumour necrosis factor-[alpha]. Nature 329: 630-632.
    • (1987) Nature , vol.329 , pp. 630-632
    • LEIBOVICH, S.J.1
  • 74
    • 0027097806 scopus 로고
    • Interleukin-8 as a macrophage-derived mediator of angiogenesis
    • KOCH, A.E. et al. 1992. Interleukin-8 as a macrophage-derived mediator of angiogenesis. Science 258: 1798-1801.
    • (1992) Science , vol.258 , pp. 1798-1801
    • KOCH, A.E.1
  • 75
    • 1542616911 scopus 로고    scopus 로고
    • Osteoblasts and osteoclasts express PEDF, VEGF-A isoforms, and VEGF receptors: Possible mediators of angiogenesis and matrix remodeling in the bone
    • TOMBRAN-TINK, J. & C.J. BARNSTABLE. 2004. Osteoblasts and osteoclasts express PEDF, VEGF-A isoforms, and VEGF receptors: possible mediators of angiogenesis and matrix remodeling in the bone. Biochem. Biophys. Res. Commun. 316: 573-579.
    • (2004) Biochem. Biophys. Res. Commun , vol.316 , pp. 573-579
    • TOMBRAN-TINK, J.1    BARNSTABLE, C.J.2
  • 76
    • 0035145620 scopus 로고    scopus 로고
    • Tie2 ligands angiopoietin-1 and angiopoietin-2 are coexpressed with vascular endothelial cell growth factor in growing human bone
    • HORNER, A. et al. 2001. Tie2 ligands angiopoietin-1 and angiopoietin-2 are coexpressed with vascular endothelial cell growth factor in growing human bone. Bone 28: 65-71.
    • (2001) Bone , vol.28 , pp. 65-71
    • HORNER, A.1
  • 77
    • 0031790387 scopus 로고    scopus 로고
    • Human osteoclasts and osteoclast-like cells synthesize and release high basal and inflammatory stimulated levels of the potent chemokine interleukin-8
    • ROTHE, L. et al. 1998. Human osteoclasts and osteoclast-like cells synthesize and release high basal and inflammatory stimulated levels of the potent chemokine interleukin-8. Endocrinology 139: 4353-4363.
    • (1998) Endocrinology , vol.139 , pp. 4353-4363
    • ROTHE, L.1
  • 78
    • 0030976755 scopus 로고    scopus 로고
    • Cytokines expressed in multinucleated cells: Paget's disease and giant cell tumors versus normal bone
    • MILLS, B.G. & A. FRAUSTO. 1997. Cytokines expressed in multinucleated cells: Paget's disease and giant cell tumors versus normal bone. Calcif. Tissue Int. 61: 16-21.
    • (1997) Calcif. Tissue Int , vol.61 , pp. 16-21
    • MILLS, B.G.1    FRAUSTO, A.2
  • 79
    • 0029797701 scopus 로고    scopus 로고
    • Hepatocyte growth factor is a coupling factor for osteoclasts and osteoblasts in vitro
    • GRANO, M. et al. 1996. Hepatocyte growth factor is a coupling factor for osteoclasts and osteoblasts in vitro. PNAS 93: 7644-7648.
    • (1996) PNAS , vol.93 , pp. 7644-7648
    • GRANO, M.1
  • 80
    • 0035195019 scopus 로고    scopus 로고
    • Adherence of multiple myeloma cells to bone marrow stromal cells upregulates vascular endothelial growth factor secretion: Therapeutic applications
    • GUPTA, D. et al. 2001. Adherence of multiple myeloma cells to bone marrow stromal cells upregulates vascular endothelial growth factor secretion: therapeutic applications. Leukemia 15: 1950-1961.
    • (2001) Leukemia , vol.15 , pp. 1950-1961
    • GUPTA, D.1
  • 81
    • 0037409086 scopus 로고    scopus 로고
    • Bone marrow immunohistochemical studies of angiogenic cytokines and their receptors in myelofibrosis with myeloid metaplasia
    • CHOU, J.M., C.-Y. LI & A. TEFFERI. 2003. Bone marrow immunohistochemical studies of angiogenic cytokines and their receptors in myelofibrosis with myeloid metaplasia. Leuk. Res. 27: 499-504.
    • (2003) Leuk. Res , vol.27 , pp. 499-504
    • CHOU, J.M.1    LI, C.-Y.2    TEFFERI, A.3
  • 82
    • 0027381392 scopus 로고
    • PCR detection of cytokines in normal human and pagetic osteoblast-like cells
    • BIRCH, M.A. et al. 1993. PCR detection of cytokines in normal human and pagetic osteoblast-like cells. J. Bone Miner. Res. 8: 1155-1162.
    • (1993) J. Bone Miner. Res , vol.8 , pp. 1155-1162
    • BIRCH, M.A.1
  • 83
    • 0028301999 scopus 로고
    • Platelet-derived growth factor-AA and -BB (PDGF-AA and -BB) enhance the synthesis of PDGF-AA in bone cell cultures
    • RYDZIEL, S., S. SHAIKH & E. CANALIS. 1994. Platelet-derived growth factor-AA and -BB (PDGF-AA and -BB) enhance the synthesis of PDGF-AA in bone cell cultures. Endocrinology 134: 2541-2546.
    • (1994) Endocrinology , vol.134 , pp. 2541-2546
    • RYDZIEL, S.1    SHAIKH, S.2    CANALIS, E.3
  • 84
    • 0024518507 scopus 로고
    • Cultured bovine bone cells synthesize basic fibroblast growth factor and store it in their extracellular matrix
    • GLOBUS, R.K., J. PLOUET & D. GOSPODAROWICZ. 1989. Cultured bovine bone cells synthesize basic fibroblast growth factor and store it in their extracellular matrix. Endocrinology 124: 1539-1547.
    • (1989) Endocrinology , vol.124 , pp. 1539-1547
    • GLOBUS, R.K.1    PLOUET, J.2    GOSPODAROWICZ, D.3
  • 85
    • 1642305344 scopus 로고    scopus 로고
    • Ras induction of superoxide activates ERK-dependent angiogenic transcription factor HIF-1{alpha} and VEGF-A expression in shock wave-stimulated osteoblasts
    • WANG, F.-S. et al. 2004. Ras induction of superoxide activates ERK-dependent angiogenic transcription factor HIF-1{alpha} and VEGF-A expression in shock wave-stimulated osteoblasts. J. Biol. Chem. 279: 10331-10337.
    • (2004) J. Biol. Chem , vol.279 , pp. 10331-10337
    • WANG, F.-S.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.