-
1
-
-
0346204034
-
A universal program to uncouple linear systems
-
S. Abramov and E. Zima. A universal program to uncouple linear systems. In Proceedings of CMCP'97, 1997.
-
(1997)
Proceedings of CMCP'97
-
-
Abramov, S.1
Zima, E.2
-
2
-
-
2342417971
-
On the integration of elementary functions
-
M. Bronstein. On the integration of elementary functions. J. Symbol. Comput., 9:117-173, 1990.
-
(1990)
J. Symbol. Comput
, vol.9
, pp. 117-173
-
-
Bronstein, M.1
-
4
-
-
15844408650
-
Uncoupling systems of linear Ore operator equations
-
Master's thesis, RISC-Linz
-
S. Gerhold. Uncoupling systems of linear Ore operator equations. Master's thesis, RISC-Linz, 2002.
-
(2002)
-
-
Gerhold, S.1
-
6
-
-
84976849768
-
Summation in finite terms
-
M. Karr. Summation in finite terms. J. ACM, 28:305-350, 1981.
-
(1981)
J. ACM
, vol.28
, pp. 305-350
-
-
Karr, M.1
-
7
-
-
33748984412
-
Application of unspecified sequences in symbolic summation
-
J. Dumas, editor, ACM Press
-
M. Kauers and C. Schneider. Application of unspecified sequences in symbolic summation. In J. Dumas, editor, Proc. ISSAC'06., pages 177-183. ACM Press, 2006.
-
(2006)
Proc. ISSAC'06
, pp. 177-183
-
-
Kauers, M.1
Schneider, C.2
-
8
-
-
33746899050
-
Indefinite summation with unspecified summands
-
M. Kauers and C. Schneider. Indefinite summation with unspecified summands. Discrete Math., 306(17):2021-2140, 2006.
-
(2006)
Discrete Math
, vol.306
, Issue.17
, pp. 2021-2140
-
-
Kauers, M.1
Schneider, C.2
-
9
-
-
0004259926
-
-
A. K. Peters, Wellesley, MA
-
M. Petkovšek, H. S. Wilf, and D. Zeilberger. A = B. A. K. Peters, Wellesley, MA, 1996.
-
(1996)
A = B
-
-
Petkovšek, M.1
Wilf, H.S.2
Zeilberger, D.3
-
10
-
-
84966223571
-
The solution of problem of integration in finite terms
-
R. Risch. The solution of problem of integration in finite terms. Bulletin of the American Mathematical Society, 79:605-608, 1970.
-
(1970)
Bulletin of the American Mathematical Society
, vol.79
, pp. 605-608
-
-
Risch, R.1
-
11
-
-
33749560321
-
Finding telescopers with minimal depth for indefinite nested sum and product expressions
-
M. Kauers, editor, ACM
-
C. Schneider. Finding telescopers with minimal depth for indefinite nested sum and product expressions. In M. Kauers, editor, Proc. ISSAC'05, pages 285-292. ACM, 2005.
-
(2005)
Proc. ISSAC'05
, pp. 285-292
-
-
Schneider, C.1
-
12
-
-
15844385984
-
A new Sigma approach to multi-summation
-
C. Schneider. A new Sigma approach to multi-summation. Advances in Applied Math., 34(4):740-767, 2005.
-
(2005)
Advances in Applied Math
, vol.34
, Issue.4
, pp. 740-767
-
-
Schneider, C.1
-
13
-
-
24344486864
-
Solving parameterized linear difference equations in terms of indefinite nested sums and products
-
C. Schneider. Solving parameterized linear difference equations in terms of indefinite nested sums and products. J. Differ. Equations Appl., 11(9):799-821, 2005.
-
(2005)
J. Differ. Equations Appl
, vol.11
, Issue.9
, pp. 799-821
-
-
Schneider, C.1
-
14
-
-
33846672625
-
Symbolic summation assists combinatorics
-
Article B56b
-
C. Schneider. Symbolic summation assists combinatorics. Sem. Lothar. Combin., 56:1-36, 2007. Article B56b.
-
(2007)
Sem. Lothar. Combin
, vol.56
, pp. 1-36
-
-
Schneider, C.1
|