메뉴 건너뛰기




Volumn 2006, Issue , 2006, Pages 177-183

Application of unspecified sequences in symbolic summation

Author keywords

Difference Fields; Symbolic Summation

Indexed keywords

AUTOMATION; COMPUTATIONAL METHODS; NUMERICAL METHODS; PROBLEM SOLVING;

EID: 33748984412     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1145/1145768.1145800     Document Type: Conference Paper
Times cited : (17)

References (27)
  • 1
  • 3
    • 85031698900 scopus 로고
    • D'Alembertian solutions of linear differential and difference equations
    • J. von zur Gathen, editor, ACM Press, Baltimore
    • S. A. Abramov and M. Petkovšek. D'Alembertian solutions of linear differential and difference equations. In J. von zur Gathen, editor, Proc. ISSAC'94, pages 169-174. ACM Press, Baltimore, 1994.
    • (1994) Proc. ISSAC'94 , pp. 169-174
    • Abramov, S.A.1    Petkovšek, M.2
  • 4
    • 33748974510 scopus 로고    scopus 로고
    • Gosper's algorithm, accurate summation, and the discrete Newton-Leibniz formula
    • S. A. Abramov and M. Petkovšek. Gosper's algorithm, accurate summation, and the discrete Newton-Leibniz formula. In Proceedings of ISSAC'06, pages 5-12, 2005.
    • (2005) Proceedings of ISSAC'06 , pp. 5-12
    • Abramov, S.A.1    Petkovšek, M.2
  • 5
    • 0041684683 scopus 로고    scopus 로고
    • On solutions of linear ordinary difference equations in their coefficient field
    • June
    • M. Bronstein. On solutions of linear ordinary difference equations in their coefficient field. J. Symbolic Comput., 29(6):841-877, June 2000.
    • (2000) J. Symbolic Comput. , vol.29 , Issue.6 , pp. 841-877
    • Bronstein, M.1
  • 6
    • 0004107349 scopus 로고
    • Interscience Publishers, John Wiley & Sons
    • R. M. Cohn. Difference Algebra. Interscience Publishers, John Wiley & Sons, 1965.
    • (1965) Difference Algebra
    • Cohn, R.M.1
  • 8
    • 0011538318 scopus 로고
    • Translations of Mathematical Monographs. American Mathematical Society, Providence, RI, Translated from the Russian by H. H. McFadden. Translation edited by Lev J. Leifman
    • G. P. Egorychev. Integral Representation and the Computation of Combinatorial Sums. Translations of Mathematical Monographs. American Mathematical Society, Providence, RI, 1984. Translated from the Russian by H. H. McFadden. Translation edited by Lev J. Leifman.
    • (1984) Integral Representation and the Computation of Combinatorial Sums
    • Egorychev, G.P.1
  • 10
    • 84976849768 scopus 로고
    • Summation in finite terms
    • M. Karr. Summation in finite terms. J. ACM, 28:305-350, 1981.
    • (1981) J. ACM , vol.28 , pp. 305-350
    • Karr, M.1
  • 11
    • 27644437692 scopus 로고    scopus 로고
    • Computer proofs for polynomial identities in arbitrary many variables
    • July
    • M. Kauers. Computer proofs for polynomial identities in arbitrary many variables. In Proceedings of ISSAC '04, pages 199-204, July 2004.
    • (2004) Proceedings of ISSAC '04 , pp. 199-204
    • Kauers, M.1
  • 12
    • 33746899050 scopus 로고    scopus 로고
    • Indefinite summation with unspecified sequences
    • to appear
    • M. Kauers and C. Schneider. Indefinite summation with unspecified sequences. Discrete Mathematics, to appear.
    • Discrete Mathematics
    • Kauers, M.1    Schneider, C.2
  • 14
    • 0003657590 scopus 로고    scopus 로고
    • Fundamental Algorithms. Addison Wesley, Reading, MA, 3rd edition
    • D. Knuth. The art of computer programming, volume 1, Fundamental Algorithms. Addison Wesley, Reading, MA, 3rd edition, 2000.
    • (2000) The Art of Computer Programming , vol.1
    • Knuth, D.1
  • 15
    • 19744371580 scopus 로고    scopus 로고
    • On two classes of identities involving harmonic numbers
    • P. Larcombe, M. Larsen, and E. Fennessey. On two classes of identities involving harmonic numbers. Util. Math., 67:65-80, 2005.
    • (2005) Util. Math. , vol.67 , pp. 65-80
    • Larcombe, P.1    Larsen, M.2    Fennessey, E.3
  • 16
    • 0001511724 scopus 로고
    • Greatest factorial factorization and symbolic summation
    • P. Paule. Greatest factorial factorization and symbolic summation. J. Symbolic Comput., 20:235-268, 1995.
    • (1995) J. Symbolic Comput. , vol.20 , pp. 235-268
    • Paule, P.1
  • 17
    • 0141838153 scopus 로고    scopus 로고
    • Computer proofs of a new family of harmonic number identities
    • P. Paule and C. Schneider. Computer proofs of a new family of harmonic number identities. Adv. in Appl. Math., 31(2):359-378, 2003.
    • (2003) Adv. in Appl. Math. , vol.31 , Issue.2 , pp. 359-378
    • Paule, P.1    Schneider, C.2
  • 18
    • 0000210471 scopus 로고
    • A Mathematica version of Zeilberger's algorithm for proving binomial coefficient identities
    • P. Paule and M. Schorn. A Mathematica version of Zeilberger's algorithm for proving binomial coefficient identities. Journal of Symbolic Computation, 20(5-6):673-698, 1995.
    • (1995) Journal of Symbolic Computation , vol.20 , Issue.5-6 , pp. 673-698
    • Paule, P.1    Schorn, M.2
  • 20
    • 0141480367 scopus 로고    scopus 로고
    • Symbolic summation in difference fields
    • RISC-Linz, J. Kepler University, PhD Thesis
    • C. Schneider. Symbolic summation in difference fields. Technical Report 01-17, RISC-Linz, J. Kepler University, 2001. PhD Thesis.
    • (2001) Technical Report , vol.1 , Issue.17
    • Schneider, C.1
  • 21
    • 15844417223 scopus 로고    scopus 로고
    • A collection of denominator bounds to solve parameterized linear difference equations in IIΣ-extensions
    • D. P. et.al., editor, Mirton Publishing
    • C. Schneider. A collection of denominator bounds to solve parameterized linear difference equations in IIΣ-extensions. In D. P. et.al., editor, Proc. SYNASC04, 6th Internat. Symposium on Symbolic and Numeric Algorithms for Scientific Computation, pages 269-282. Mirton Publishing, 2004.
    • (2004) Proc. SYNASC04, 6th Internat. Symposium on Symbolic and Numeric Algorithms for Scientific Computation , pp. 269-282
    • Schneider, C.1
  • 22
    • 15844368051 scopus 로고    scopus 로고
    • The summation package Sigma: Underlying principles and a rhombus tiling application
    • C. Schneider. The summation package Sigma: Underlying principles and a rhombus tiling application. Discrete Math. Theor. Comput. Sci., 6(2):365-386, 2004.
    • (2004) Discrete Math. Theor. Comput. Sci. , vol.6 , Issue.2 , pp. 365-386
    • Schneider, C.1
  • 23
    • 15844414168 scopus 로고    scopus 로고
    • Degree bounds to find polynomial solutions of parameterized linear difference equations in IIΣ-fields
    • C. Schneider. Degree bounds to find polynomial solutions of parameterized linear difference equations in IIΣ-fields. Appl. Algebra Engrg. Comm. Comput., 16(1):l-32, 2005.
    • (2005) Appl. Algebra Engrg. Comm. Comput. , vol.16 , Issue.1
    • Schneider, C.1
  • 24
    • 33749560321 scopus 로고    scopus 로고
    • Finding telescopers with minimal depth for indefinite nested sum and product expressions
    • M. Kauers, editor, ACM
    • C. Schneider. Finding telescopers with minimal depth for indefinite nested sum and product expressions. In M. Kauers, editor, Proc. ISSAC'05, pages 285-292. ACM, 2005.
    • (2005) Proc. ISSAC'05 , pp. 285-292
    • Schneider, C.1
  • 25
    • 24344486864 scopus 로고    scopus 로고
    • Solving parameterized linear difference equations in terms of indefinite nested sums and products
    • C. Schneider. Solving parameterized linear difference equations in terms of indefinite nested sums and products. J. Differ. Equations Appl., 11(9):799-821, 2005.
    • (2005) J. Differ. Equations Appl. , vol.11 , Issue.9 , pp. 799-821
    • Schneider, C.1
  • 26
    • 73949145301 scopus 로고
    • The method of creative telescoping
    • D. Zeilberger. The method of creative telescoping. J. Symbolic Comput., 11:195-204, 1991.
    • (1991) J. Symbolic Comput. , vol.11 , pp. 195-204
    • Zeilberger, D.1
  • 27
    • 0242701516 scopus 로고    scopus 로고
    • A kind of binomial identity
    • Z. Zhang. A kind of binomial identity. Discrete Math., 196:291-298, 1999.
    • (1999) Discrete Math. , vol.196 , pp. 291-298
    • Zhang, Z.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.