-
1
-
-
4344588703
-
Telescoping in the context of symbolic summation in Maple
-
S. Abramov, J. Carette, K. Geddes, and H. Le. Telescoping in the context of symbolic summation in Maple. Journal of Symbolic Computation, 38(4): 1303-1326, 2004.
-
(2004)
Journal of Symbolic Computation
, vol.38
, Issue.4
, pp. 1303-1326
-
-
Abramov, S.1
Carette, J.2
Geddes, K.3
Le, H.4
-
3
-
-
85031698900
-
D'Alembertian solutions of linear differential and difference equations
-
J. von zur Gathen, editor, ACM Press, Baltimore
-
S. A. Abramov and M. Petkovšek. D'Alembertian solutions of linear differential and difference equations. In J. von zur Gathen, editor, Proc. ISSAC'94, pages 169-174. ACM Press, Baltimore, 1994.
-
(1994)
Proc. ISSAC'94
, pp. 169-174
-
-
Abramov, S.A.1
Petkovšek, M.2
-
4
-
-
33748974510
-
Gosper's algorithm, accurate summation, and the discrete Newton-Leibniz formula
-
S. A. Abramov and M. Petkovšek. Gosper's algorithm, accurate summation, and the discrete Newton-Leibniz formula. In Proceedings of ISSAC'06, pages 5-12, 2005.
-
(2005)
Proceedings of ISSAC'06
, pp. 5-12
-
-
Abramov, S.A.1
Petkovšek, M.2
-
5
-
-
0041684683
-
On solutions of linear ordinary difference equations in their coefficient field
-
June
-
M. Bronstein. On solutions of linear ordinary difference equations in their coefficient field. J. Symbolic Comput., 29(6):841-877, June 2000.
-
(2000)
J. Symbolic Comput.
, vol.29
, Issue.6
, pp. 841-877
-
-
Bronstein, M.1
-
6
-
-
0004107349
-
-
Interscience Publishers, John Wiley & Sons
-
R. M. Cohn. Difference Algebra. Interscience Publishers, John Wiley & Sons, 1965.
-
(1965)
Difference Algebra
-
-
Cohn, R.M.1
-
8
-
-
0011538318
-
-
Translations of Mathematical Monographs. American Mathematical Society, Providence, RI, Translated from the Russian by H. H. McFadden. Translation edited by Lev J. Leifman
-
G. P. Egorychev. Integral Representation and the Computation of Combinatorial Sums. Translations of Mathematical Monographs. American Mathematical Society, Providence, RI, 1984. Translated from the Russian by H. H. McFadden. Translation edited by Lev J. Leifman.
-
(1984)
Integral Representation and the Computation of Combinatorial Sums
-
-
Egorychev, G.P.1
-
10
-
-
84976849768
-
Summation in finite terms
-
M. Karr. Summation in finite terms. J. ACM, 28:305-350, 1981.
-
(1981)
J. ACM
, vol.28
, pp. 305-350
-
-
Karr, M.1
-
11
-
-
27644437692
-
Computer proofs for polynomial identities in arbitrary many variables
-
July
-
M. Kauers. Computer proofs for polynomial identities in arbitrary many variables. In Proceedings of ISSAC '04, pages 199-204, July 2004.
-
(2004)
Proceedings of ISSAC '04
, pp. 199-204
-
-
Kauers, M.1
-
12
-
-
33746899050
-
Indefinite summation with unspecified sequences
-
to appear
-
M. Kauers and C. Schneider. Indefinite summation with unspecified sequences. Discrete Mathematics, to appear.
-
Discrete Mathematics
-
-
Kauers, M.1
Schneider, C.2
-
14
-
-
0003657590
-
-
Fundamental Algorithms. Addison Wesley, Reading, MA, 3rd edition
-
D. Knuth. The art of computer programming, volume 1, Fundamental Algorithms. Addison Wesley, Reading, MA, 3rd edition, 2000.
-
(2000)
The Art of Computer Programming
, vol.1
-
-
Knuth, D.1
-
15
-
-
19744371580
-
On two classes of identities involving harmonic numbers
-
P. Larcombe, M. Larsen, and E. Fennessey. On two classes of identities involving harmonic numbers. Util. Math., 67:65-80, 2005.
-
(2005)
Util. Math.
, vol.67
, pp. 65-80
-
-
Larcombe, P.1
Larsen, M.2
Fennessey, E.3
-
16
-
-
0001511724
-
Greatest factorial factorization and symbolic summation
-
P. Paule. Greatest factorial factorization and symbolic summation. J. Symbolic Comput., 20:235-268, 1995.
-
(1995)
J. Symbolic Comput.
, vol.20
, pp. 235-268
-
-
Paule, P.1
-
17
-
-
0141838153
-
Computer proofs of a new family of harmonic number identities
-
P. Paule and C. Schneider. Computer proofs of a new family of harmonic number identities. Adv. in Appl. Math., 31(2):359-378, 2003.
-
(2003)
Adv. in Appl. Math.
, vol.31
, Issue.2
, pp. 359-378
-
-
Paule, P.1
Schneider, C.2
-
18
-
-
0000210471
-
A Mathematica version of Zeilberger's algorithm for proving binomial coefficient identities
-
P. Paule and M. Schorn. A Mathematica version of Zeilberger's algorithm for proving binomial coefficient identities. Journal of Symbolic Computation, 20(5-6):673-698, 1995.
-
(1995)
Journal of Symbolic Computation
, vol.20
, Issue.5-6
, pp. 673-698
-
-
Paule, P.1
Schorn, M.2
-
19
-
-
0004259926
-
-
A. K. Peters, Wellesley, MA
-
M. Petkovšek, H. S. Wilf, and D. Zeilberger. A = B. A. K. Peters, Wellesley, MA, 1996.
-
(1996)
A = B
-
-
Petkovšek, M.1
Wilf, H.S.2
Zeilberger, D.3
-
20
-
-
0141480367
-
Symbolic summation in difference fields
-
RISC-Linz, J. Kepler University, PhD Thesis
-
C. Schneider. Symbolic summation in difference fields. Technical Report 01-17, RISC-Linz, J. Kepler University, 2001. PhD Thesis.
-
(2001)
Technical Report
, vol.1
, Issue.17
-
-
Schneider, C.1
-
21
-
-
15844417223
-
A collection of denominator bounds to solve parameterized linear difference equations in IIΣ-extensions
-
D. P. et.al., editor, Mirton Publishing
-
C. Schneider. A collection of denominator bounds to solve parameterized linear difference equations in IIΣ-extensions. In D. P. et.al., editor, Proc. SYNASC04, 6th Internat. Symposium on Symbolic and Numeric Algorithms for Scientific Computation, pages 269-282. Mirton Publishing, 2004.
-
(2004)
Proc. SYNASC04, 6th Internat. Symposium on Symbolic and Numeric Algorithms for Scientific Computation
, pp. 269-282
-
-
Schneider, C.1
-
22
-
-
15844368051
-
The summation package Sigma: Underlying principles and a rhombus tiling application
-
C. Schneider. The summation package Sigma: Underlying principles and a rhombus tiling application. Discrete Math. Theor. Comput. Sci., 6(2):365-386, 2004.
-
(2004)
Discrete Math. Theor. Comput. Sci.
, vol.6
, Issue.2
, pp. 365-386
-
-
Schneider, C.1
-
23
-
-
15844414168
-
Degree bounds to find polynomial solutions of parameterized linear difference equations in IIΣ-fields
-
C. Schneider. Degree bounds to find polynomial solutions of parameterized linear difference equations in IIΣ-fields. Appl. Algebra Engrg. Comm. Comput., 16(1):l-32, 2005.
-
(2005)
Appl. Algebra Engrg. Comm. Comput.
, vol.16
, Issue.1
-
-
Schneider, C.1
-
24
-
-
33749560321
-
Finding telescopers with minimal depth for indefinite nested sum and product expressions
-
M. Kauers, editor, ACM
-
C. Schneider. Finding telescopers with minimal depth for indefinite nested sum and product expressions. In M. Kauers, editor, Proc. ISSAC'05, pages 285-292. ACM, 2005.
-
(2005)
Proc. ISSAC'05
, pp. 285-292
-
-
Schneider, C.1
-
25
-
-
24344486864
-
Solving parameterized linear difference equations in terms of indefinite nested sums and products
-
C. Schneider. Solving parameterized linear difference equations in terms of indefinite nested sums and products. J. Differ. Equations Appl., 11(9):799-821, 2005.
-
(2005)
J. Differ. Equations Appl.
, vol.11
, Issue.9
, pp. 799-821
-
-
Schneider, C.1
-
26
-
-
73949145301
-
The method of creative telescoping
-
D. Zeilberger. The method of creative telescoping. J. Symbolic Comput., 11:195-204, 1991.
-
(1991)
J. Symbolic Comput.
, vol.11
, pp. 195-204
-
-
Zeilberger, D.1
-
27
-
-
0242701516
-
A kind of binomial identity
-
Z. Zhang. A kind of binomial identity. Discrete Math., 196:291-298, 1999.
-
(1999)
Discrete Math.
, vol.196
, pp. 291-298
-
-
Zhang, Z.1
|