메뉴 건너뛰기




Volumn , Issue , 2007, Pages 2489-2494

Automatic outlier detection: A Bayesian approach

Author keywords

[No Author keywords available]

Indexed keywords

BAYESIAN APPROACH; DATA PRE PROCESSING; HUMANOID ROBOTS; OUTLIER REMOVAL;

EID: 36349009240     PISSN: 10504729     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/ROBOT.2007.363693     Document Type: Conference Paper
Times cited : (36)

References (20)
  • 3
    • 36349022269 scopus 로고    scopus 로고
    • J. B. MacQueen. Some methods for classification and analysis of multivariate observations. In Proceedings of 5th Berkeley Symposium on Mathematical Statistics and Probability, 1:281-297, 1967.
    • J. B. MacQueen. Some methods for classification and analysis of multivariate observations. In Proceedings of 5th Berkeley Symposium on Mathematical Statistics and Probability, 1:281-297, 1967.
  • 5
    • 0041875229 scopus 로고    scopus 로고
    • On spectral clustering: Analysis and an algorithm
    • Advances in Neural Information Processing Systems 14
    • A. Ng, M. Jordan, and Y. Weiss. On spectral clustering: Analysis and an algorithm. In In Advances in Neural Information Processing Systems 14: Proceedings of the 2001., 2001.
    • (2001) Proceedings of the 2001
    • Ng, A.1    Jordan, M.2    Weiss, Y.3
  • 6
    • 0000417176 scopus 로고
    • Mixture models, outliers and the em algorithm
    • M. Aitkin and G. T. Wilson. Mixture models, outliers and the em algorithm. Technometrics, 22:325-331, 1980.
    • (1980) Technometrics , vol.22 , pp. 325-331
    • Aitkin, M.1    Wilson, G.T.2
  • 7
    • 78651584759 scopus 로고    scopus 로고
    • Outlier detection and clustering by partial mixture modeling
    • Heidelberg, Physica-Verlag
    • D. W. Scott. Outlier detection and clustering by partial mixture modeling. In COMPSTAT 2004 Symposium, pages 453-465, Heidelberg, 2005. Physica-Verlag.
    • (2005) COMPSTAT 2004 Symposium , pp. 453-465
    • Scott, D.W.1
  • 8
    • 0019574599 scopus 로고
    • Random sample consensus: A paradigm for model fitting with applications to image analysis and automated cartography
    • 38.1-395
    • M. A. Fischler and R. C. Bolles. Random sample consensus: A paradigm for model fitting with applications to image analysis and automated cartography. Communications of the ACM, 24(6):38.1-395, 1981.
    • (1981) Communications of the ACM , vol.24 , Issue.6
    • Fischler, M.A.1    Bolles, R.C.2
  • 9
    • 0032596586 scopus 로고    scopus 로고
    • Monte carlo localization: Efficient position estimation for mobile robots
    • D. Fox, W. Burgard, D. Dellaert, and S. Thrun. Monte carlo localization: Efficient position estimation for mobile robots. In AAAI/IAAI, pages 343-349, 1999.
    • (1999) AAAI/IAAI , pp. 343-349
    • Fox, D.1    Burgard, W.2    Dellaert, D.3    Thrun, S.4
  • 10
    • 33751337671 scopus 로고    scopus 로고
    • Robot motion: Probabilistic model; sampling and gaussian implementations; markov localization
    • Technical report, SRI International, 2001
    • K Konolige. Robot motion: Probabilistic model; sampling and gaussian implementations; markov localization. Technical report, SRI International, 2001.
    • Konolige, K.1
  • 12
    • 0031074521 scopus 로고    scopus 로고
    • Locally weighted learning
    • April
    • C. Atkeson, A. Moore, and S. Schaal. Locally weighted learning. AI Review, 11:11-73, April 1997.
    • (1997) AI Review , vol.11 , pp. 11-73
    • Atkeson, C.1    Moore, A.2    Schaal, S.3
  • 15
    • 0003611509 scopus 로고
    • PhD thesis, Dept. of Computer Science, University of Toronto
    • R.M. Neal. Bayesian learning for neural networks. PhD thesis, Dept. of Computer Science, University of Toronto, 1994.
    • (1994) Bayesian learning for neural networks
    • Neal, R.M.1
  • 19
  • 20
    • 36348956948 scopus 로고    scopus 로고
    • D. C. Hoaglin. Letter values: A set of selected order statistics. In D. C. Hoaglin, F. Mosteller, and J. W. Tukey, editors, Understanding Robust and Exploratory Data Analysis, pages 33-57. Wiley, 1983.
    • D. C. Hoaglin. Letter values: A set of selected order statistics. In D. C. Hoaglin, F. Mosteller, and J. W. Tukey, editors, Understanding Robust and Exploratory Data Analysis, pages 33-57. Wiley, 1983.


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.