-
1
-
-
0042308437
-
Is artificial intelligence an intelligent choice for gastroenterologists?
-
Hollander D. Is artificial intelligence an intelligent choice for gastroenterologists? Dig Liv Dis 2003; 35:212-214.
-
(2003)
Dig Liv Dis
, vol.35
, pp. 212-214
-
-
Hollander, D.1
-
2
-
-
33846683604
-
International experience on the use of artificial neural networks in gastroenterology
-
Grossi E, Mancini A, Buscema M. International experience on the use of artificial neural networks in gastroenterology. Dig Liv Dis 2007; 39:278-285.
-
(2007)
Dig Liv Dis
, vol.39
, pp. 278-285
-
-
Grossi, E.1
Mancini, A.2
Buscema, M.3
-
3
-
-
36248957151
-
Introduction to artificial neural networks
-
Grossi E, Buscema M. Introduction to artificial neural networks. Eur J Gastroenterol Hepatol 2007; 19:1046-1054.
-
(2007)
Eur J Gastroenterol Hepatol
, vol.19
, pp. 1046-1054
-
-
Grossi, E.1
Buscema, M.2
-
4
-
-
36248951195
-
Artificial Neural Networks can classify uninvestigated patients with dyspepsia
-
Andriulli A, Grossi E, Buscema M, Festa V, Perri V. Artificial Neural Networks can classify uninvestigated patients with dyspepsia. Eur J Gastroenterol Hepatol 2007; 19:1055-1058.
-
(2007)
Eur J Gastroenterol Hepatol
, vol.19
, pp. 1055-1058
-
-
Andriulli, A.1
Grossi, E.2
Buscema, M.3
Festa, V.4
Perri, V.5
-
5
-
-
0041306953
-
on behalf of the NUD LOOK Study Group. Contribution of artificial neural networks to the classification and treatment of patients with uninvestigated dyspepsia
-
Andriulli A, Grossi E, Buscema M, Festa V, Intraligi NM, Dominaci P, et al., on behalf of the NUD LOOK Study Group. Contribution of artificial neural networks to the classification and treatment of patients with uninvestigated dyspepsia. Dig Liv Dis 2003; 35:222-231.
-
(2003)
Dig Liv Dis
, vol.35
, pp. 222-231
-
-
Andriulli, A.1
Grossi, E.2
Buscema, M.3
Festa, V.4
Intraligi, N.M.5
Dominaci, P.6
-
6
-
-
22044454320
-
An optimized experimental protocol based on neuro-evolutionary algorithms. Application to the classification of dyspeptic patients and to the prediction of the effectiveness of their treatment
-
Buscema M, Grossi E, Intraligi M, Garbagna N, Andriulli A, Breda M. An optimized experimental protocol based on neuro-evolutionary algorithms. Application to the classification of dyspeptic patients and to the prediction of the effectiveness of their treatment. Artif Intell Med 2005; 34:279-305.
-
(2005)
Artif Intell Med
, vol.34
, pp. 279-305
-
-
Buscema, M.1
Grossi, E.2
Intraligi, M.3
Garbagna, N.4
Andriulli, A.5
Breda, M.6
-
7
-
-
36249013261
-
Assessing the severity of atrophic gastritis
-
Annibale B, Lahner E. Assessing the severity of atrophic gastritis. Eur J Gastroenterol Hepatol 2007; 19:1059-1063.
-
(2007)
Eur J Gastroenterol Hepatol
, vol.19
, pp. 1059-1063
-
-
Annibale, B.1
Lahner, E.2
-
8
-
-
36248986257
-
Prediction of outcome in acute lower gastrointestinal hemorrhage: Role of artificial neural network
-
Das A, Wong RCK. Prediction of outcome in acute lower gastrointestinal hemorrhage: role of artificial neural network. Eur J Gastroenterol Hepatol 2007; 19:1064-1069.
-
(2007)
Eur J Gastroenterol Hepatol
, vol.19
, pp. 1064-1069
-
-
Das, A.1
Wong, R.C.K.2
-
9
-
-
0142155223
-
Prediction of outcome in acute lower gastrointestinal hemorrhage based on an artificial neural network: Internal and external validation of a predictive model
-
Das A, Ben-Menachem T, Cooper GS, Chak A, Sivak MV Jr, Gonet JA, et al. Prediction of outcome in acute lower gastrointestinal hemorrhage based on an artificial neural network: internal and external validation of a predictive model. Lancet 2003; 362:1261-1266.
-
(2003)
Lancet
, vol.362
, pp. 1261-1266
-
-
Das, A.1
Ben-Menachem, T.2
Cooper, G.S.3
Chak, A.4
Sivak Jr, M.V.5
Gonet, J.A.6
-
10
-
-
33645103359
-
Proposal of a modified Child-Turcotte-Pugh scoring system and comparison with the model for end-stage liver disease for outcome prediction in patients with cirrhosis
-
Huo TI, Lin HC, Wu JC, Lee FY, Hou MC, Lee PC, et al. Proposal of a modified Child-Turcotte-Pugh scoring system and comparison with the model for end-stage liver disease for outcome prediction in patients with cirrhosis. Liver Transpl 2006; 12:65-71.
-
(2006)
Liver Transpl
, vol.12
, pp. 65-71
-
-
Huo, T.I.1
Lin, H.C.2
Wu, J.C.3
Lee, F.Y.4
Hou, M.C.5
Lee, P.C.6
-
11
-
-
69749126033
-
Models for prediction of mortality from cirrhosis with special reference to artificial neural network: A critical review
-
in press
-
Ghoshal UC, Das A. Models for prediction of mortality from cirrhosis with special reference to artificial neural network: a critical review. Hepatol Int; in press.
-
Hepatol Int
-
-
Ghoshal, U.C.1
Das, A.2
|