메뉴 건너뛰기




Volumn 52, Issue 6, 2001, Pages 990-1016

Spatial homogeneity and invariant manifolds for damped hyperbolic equations

Author keywords

Asymptotic completeness; Invariant manifold; Limit equation; Spatial homogeneity

Indexed keywords


EID: 0035541510     PISSN: 00442275     EISSN: None     Source Type: Journal    
DOI: 10.1007/PL00001591     Document Type: Article
Times cited : (2)

References (22)
  • 1
    • 0007212643 scopus 로고
    • Spatial homogeneity in damped hyperbolic equations
    • A.N. Carvalho, Spatial homogeneity in damped hyperbolic equations, Dynamic System and Applications 2 (1992), 221-250.
    • (1992) Dynamic System and Applications , vol.2 , pp. 221-250
    • Carvalho, A.N.1
  • 2
    • 0000067143 scopus 로고
    • Large diffusion with dispersion
    • A. Carvalho and J. K. Hale, Large diffusion with dispersion, Nonlinear Analysis TMA 17(12) (1991), 1139-1151.
    • (1991) Nonlinear Analysis TMA , vol.17 , Issue.12 , pp. 1139-1151
    • Carvalho, A.1    Hale, J.K.2
  • 3
    • 0002681391 scopus 로고
    • A scalar parabolic equation whose asymptotic behavior is dictated by a system of ordinary differential equations
    • A. N. Carvalho and A. L. Pereira, A scalar parabolic equation whose asymptotic behavior is dictated by a system of ordinary differential equations, J. Diff. Equa. 112 (1994), 81-130.
    • (1994) J. Diff. Equa. , vol.112 , pp. 81-130
    • Carvalho, A.N.1    Pereira, A.L.2
  • 5
    • 38249029133 scopus 로고
    • Invariant manifolds for flows in Banach spaces
    • S.-N. Chow and K. Lu, Invariant manifolds for flows in Banach spaces, J. Diff. Equa. 74 (1988), 285-317.
    • (1988) J. Diff. Equa. , vol.74 , pp. 285-317
    • Chow, S.-N.1    Lu, K.2
  • 6
    • 0001842649 scopus 로고
    • Large time behavior of solutions of systems of nonlinear reaction-diffusion equations
    • E. Conway, D. Hoff and J. Smoller, Large time behavior of solutions of systems of nonlinear reaction-diffusion equations, SIAM J. Appl. Math 35 (1978), 1-16.
    • (1978) SIAM J. Appl. Math , vol.35 , pp. 1-16
    • Conway, E.1    Hoff, D.2    Smoller, J.3
  • 7
    • 45949116702 scopus 로고
    • On the explicit construction of an ODE which has the same dynamics as a scalar parabolic PDE
    • G. Fusco, On the explicit construction of an ODE which has the same dynamics as a scalar parabolic PDE , J. Diff. Equa. 69 (1987), 85-110.
    • (1987) J. Diff. Equa. , vol.69 , pp. 85-110
    • Fusco, G.1
  • 9
    • 38249040922 scopus 로고
    • Large diffusivity and asymptotic behavior in parabolic systems
    • J. K. Hale, Large diffusivity and asymptotic behavior in parabolic systems, J. Math. Anal. Appl. 118(2) (1986), 455-466.
    • (1986) J. Math. Anal. Appl. , vol.118 , Issue.2 , pp. 455-466
    • Hale, J.K.1
  • 10
    • 0000610074 scopus 로고
    • Upper semicontinuity of the attractor for a singularly perturbed hyperbolic equation
    • J. K. Hale and G. Raugel, Upper semicontinuity of the attractor for a singularly perturbed hyperbolic equation, J. Diff. Equa. 73 (1988), 197-214.
    • (1988) J. Diff. Equa. , vol.73 , pp. 197-214
    • Hale, J.K.1    Raugel, G.2
  • 11
    • 0003304963 scopus 로고
    • Geometric theory of semilinear parabolic equations
    • Springer-Verlag
    • D. Henry, Geometric Theory of Semilinear Parabolic Equations, Lecture Notes in Mathematics, Vol.840, Springer-Verlag, 1981.
    • (1981) Lecture Notes in Mathematics , vol.840
    • Henry, D.1
  • 12
    • 0002431748 scopus 로고
    • Invariant manifolds for flows
    • J. K. Hale and J. P. LaSalle eds., Academic Press, New York
    • J. Kurzweil, Invariant manifolds for flows, in: Differential Equations and Dynamical Systems (J. K. Hale and J. P. LaSalle eds.), Academic Press, New York 1967, pp. 431-468.
    • (1967) Differential Equations and Dynamical Systems , pp. 431-468
    • Kurzweil, J.1
  • 14
    • 0007341958 scopus 로고
    • Finite-dimensional attracting manifolds in reaction-diffusion equations
    • X. Mora, Finite-dimensional attracting manifolds in reaction-diffusion equations, Contemporary Mathematics 17 (1983), 353-360.
    • (1983) Contemporary Mathematics , vol.17 , pp. 353-360
    • Mora, X.1
  • 15
    • 0009903233 scopus 로고
    • Finite-dimensional attracting invariant manifolds for damped semilinear wave equations
    • J.I. Diaz and P.L.Lions eds., Longman, New York
    • X. Mora, Finite-dimensional attracting invariant manifolds for damped semilinear wave equations, in: Contributions to Nonlinear Partial Differential Equations II (J.I. Diaz and P.L.Lions eds.), Longman, New York 1987.
    • (1987) Contributions to Nonlinear Partial Differential Equations II , vol.2
    • Mora, X.1
  • 16
    • 0002844740 scopus 로고
    • Existence and non-existence of finite-dimensional globally attracting invariant manifold in semilinear damped wave equations
    • Chow and Hale eds., Springer-Verlag
    • X. Mora and J. Solà-Morales, Existence and non-existence of finite-dimensional globally attracting invariant manifold in semilinear damped wave equations, in: Dynamics of Infinite Dimensional Dynamical System, (Chow and Hale eds.), Springer-Verlag 1987, pp. 187-210.
    • (1987) Dynamics of Infinite Dimensional Dynamical System , pp. 187-210
    • Mora, X.1    Solà-Morales, J.2
  • 17
    • 45149143498 scopus 로고
    • The singular limit dynamics of semilinear damped wave equations
    • X. Mora and J. Solà-Morales, The singular limit dynamics of semilinear damped wave equations, J. Diff. Equa. 78(2) (1989), 262-307.
    • (1989) J. Diff. Equa. , vol.78 , Issue.2 , pp. 262-307
    • Mora, X.1    Solà-Morales, J.2
  • 18
    • 0003316678 scopus 로고
    • Semigroups of linear operators and applications to partial differential equations
    • Springer-Verlag
    • A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Applied Mathematical Sciences, Vol.44, Springer-Verlag 1983.
    • (1983) Applied Mathematical Sciences , vol.44
    • Pazy, A.1
  • 20
    • 0032338073 scopus 로고    scopus 로고
    • One-dimensional global attractor for discretization of the damped driven sine-Gordon equation
    • M. Qian, W.-X. Qin, S. Zhu, One-dimensional global attractor for discretization of the damped driven sine-Gordon equation, Nonlinear Anal. 34(7) (1998), 941-951.
    • (1998) Nonlinear Anal. , vol.34 , Issue.7 , pp. 941-951
    • Qian, M.1    Qin, W.-X.2    Zhu, S.3
  • 21
    • 84975976954 scopus 로고
    • Trends to spatial homogeneity for solutions of semilinear damped equations
    • J. Solà-Morales and M. València, Trends to spatial homogeneity for solutions of semilinear damped equations, Proc. Roy. Soc. Edinburgh, Secs. A, 105 (1987), 117-126.
    • (1987) Proc. Roy. Soc. Edinburgh, Secs. A , pp. 117-126
    • Solà-Morales, J.1    València, M.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.