메뉴 건너뛰기




Volumn 16, Issue 5, 2007, Pages 457-492

Incomplete hierarchical data

Author keywords

[No Author keywords available]

Indexed keywords

ALPHA INTERFERON; PLACEBO;

EID: 35649011462     PISSN: 09622802     EISSN: None     Source Type: Journal    
DOI: 10.1177/0962280206075310     Document Type: Review
Times cited : (14)

References (86)
  • 1
    • 0017133178 scopus 로고
    • Inference and missing data
    • Rubin DB. Inference and missing data. Biometrika 1976; 63: 581-92.
    • (1976) Biometrika , vol.63 , pp. 581-592
    • Rubin, D.B.1
  • 4
    • 0002373855 scopus 로고
    • Informative dropout in longitudinal data analysis (discussion to Diggle PJ, Kenward MG)
    • Little RJA. Informative dropout in longitudinal data analysis (discussion to Diggle PJ, Kenward MG). Applied Statistics 1994; 43: 78.
    • (1994) Applied Statistics , vol.43 , pp. 78
    • Little, R.J.A.1
  • 5
    • 0030965969 scopus 로고    scopus 로고
    • Testing for treatment differences with dropouts present in clinical trials - a composite approach
    • Shih WJ, Quan H. Testing for treatment differences with dropouts present in clinical trials - a composite approach. Statistics in Medicine 1997; 16: 1225-39.
    • (1997) Statistics in Medicine , vol.16 , pp. 1225-1239
    • Shih, W.J.1    Quan, H.2
  • 6
    • 4243828610 scopus 로고
    • Informative dropout in longitudinal data analysis (with discussion)
    • Diggle PD, Kenward MG. Informative dropout in longitudinal data analysis (with discussion). Applied Statistics 1994; 43: 49-93.
    • (1994) Applied Statistics , vol.43 , pp. 49-93
    • Diggle, P.D.1    Kenward, M.G.2
  • 8
    • 0345734935 scopus 로고    scopus 로고
    • Likelihood based frequentist inference when data are missing at random
    • Kenward MG, Molenberghs G. Likelihood based frequentist inference when data are missing at random. Statistical Science 1998; 12: 236-47.
    • (1998) Statistical Science , vol.12 , pp. 236-247
    • Kenward, M.G.1    Molenberghs, G.2
  • 13
    • 0031729840 scopus 로고    scopus 로고
    • A comparison of the random-effects pattern mixture model with last observation carried forward (LOCF) analysis in longitudinal clinical trials with dropouts
    • Siddiqui O, Ali MW. A comparison of the random-effects pattern mixture model with last observation carried forward (LOCF) analysis in longitudinal clinical trials with dropouts. Journal of Biopharmaceutical Statistics 1998; 8: 545-63.
    • (1998) Journal of Biopharmaceutical Statistics , vol.8 , pp. 545-563
    • Siddiqui, O.1    Ali, M.W.2
  • 15
    • 27744601796 scopus 로고    scopus 로고
    • Tutorial: Direct likelihood analysis versus simple forms of imputation for missing data in randomized clinical trials
    • Beunckens C, Molenberghs G, Kenward MG. Tutorial: direct likelihood analysis versus simple forms of imputation for missing data in randomized clinical trials. Clinical Trials 2005; 2: 379-86.
    • (2005) Clinical Trials , vol.2 , pp. 379-386
    • Beunckens, C.1    Molenberghs, G.2    Kenward, M.G.3
  • 16
    • 0001425197 scopus 로고    scopus 로고
    • Linear Mixed Models in Practice: A SAS-Oriented Approach
    • Springer-Verlag
    • Verbeke G, Molenberghs G. Linear Mixed Models in Practice: A SAS-Oriented Approach. Lecture Notes in Statistics. Volume 126. Springer-Verlag, 1997.
    • (1997) Lecture Notes in Statistics , vol.126
    • Verbeke, G.1    Molenberghs, G.2
  • 17
    • 0001342385 scopus 로고
    • A method of estimation of missing values in multivariate data suitable for use with an electronic computer
    • Buck SF. A method of estimation of missing values in multivariate data suitable for use with an electronic computer. Journal of the Royal Statistical Society, Series B 1960; 22: 302-6.
    • (1960) Journal of the Royal Statistical Society, Series B , vol.22 , pp. 302-306
    • Buck, S.F.1
  • 18
    • 77649173768 scopus 로고
    • Longitudinal data analysis using generalized linear models
    • Liang K-Y, Zeger SL. Longitudinal data analysis using generalized linear models. Biometrika 1986; 73: 13-22.
    • (1986) Biometrika , vol.73 , pp. 13-22
    • Liang, K.-Y.1    Zeger, S.L.2
  • 19
    • 84950421496 scopus 로고
    • Analysis of semiparametric regression models for repeated outcomes in the presence of missing data
    • Robins JM, Rotnitzky A, Zhao LP, Analysis of semiparametric regression models for repeated outcomes in the presence of missing data. Journal of the American Statistical Association 1995; 90: 106-121.
    • (1995) Journal of the American Statistical Association , vol.90 , pp. 106-121
    • Robins, J.M.1    Rotnitzky, A.2    Zhao, L.P.3
  • 20
    • 28444485368 scopus 로고    scopus 로고
    • Multiple imputation in multivariate problems when the imputation and analysis models differ
    • Schafer JL. Multiple imputation in multivariate problems when the imputation and analysis models differ. Statistica Neerlandica 2003; 57: 19-35.
    • (2003) Statistica Neerlandica , vol.57 , pp. 19-35
    • Schafer, J.L.1
  • 24
    • 35649002524 scopus 로고    scopus 로고
    • Bahadur RR. A representation of the joint distribution of responses to n dichotomous items. In Solomon H ed. Studies in Item Analysis and Prediction. Stanford Mathematical Studies in the Social Sciences VI. Stanford University Press, 1961.
    • Bahadur RR. A representation of the joint distribution of responses to n dichotomous items. In Solomon H ed. Studies in Item Analysis and Prediction. Stanford Mathematical Studies in the Social Sciences VI. Stanford University Press, 1961.
  • 25
    • 0014841634 scopus 로고
    • Multivariate probit analysis
    • Ashford JR, Sowden RR. Multivariate probit analysis. Biometrics 1970; 26: 535-46.
    • (1970) Biometrics , vol.26 , pp. 535-546
    • Ashford, J.R.1    Sowden, R.R.2
  • 26
    • 84950441064 scopus 로고
    • Marginal modelling of correlated ordinal data using a multivariate Plackett distribution
    • Molenberghs G, Lesaffre E. Marginal modelling of correlated ordinal data using a multivariate Plackett distribution. Journal of the American Statistical Association 1994; 89: 633-44.
    • (1994) Journal of the American Statistical Association , vol.89 , pp. 633-644
    • Molenberghs, G.1    Lesaffre, E.2
  • 27
    • 84950456463 scopus 로고
    • Simultaneously modelling joint and marginal distributions of multivariate categorical responses
    • Lang JB, Agresti A. Simultaneously modelling joint and marginal distributions of multivariate categorical responses. Journal of the American Statistical Association 1994; 89: 625-32.
    • (1994) Journal of the American Statistical Association , vol.89 , pp. 625-632
    • Lang, J.B.1    Agresti, A.2
  • 28
    • 0023021371 scopus 로고
    • Global cross-ratio models for bivariate, discrete, ordered responses
    • Dale JR. Global cross-ratio models for bivariate, discrete, ordered responses. Biometrics 1986; 42: 909-17.
    • (1986) Biometrics , vol.42 , pp. 909-917
    • Dale, J.R.1
  • 30
    • 0033619151 scopus 로고    scopus 로고
    • Marginal modelling of multivariate categorical data
    • Molenberghs G, Lesaffre E. Marginal modelling of multivariate categorical data. Statistics in Medicine 1999; 18: 2237-55.
    • (1999) Statistics in Medicine , vol.18 , pp. 2237-2255
    • Molenberghs, G.1    Lesaffre, E.2
  • 33
    • 0032264670 scopus 로고    scopus 로고
    • A note on the comparison of pseudo-likelihood and generalized estimating equations for marginal odds ratio models
    • Geys H, Molenberghs M, Lipsitz, SR. A note on the comparison of pseudo-likelihood and generalized estimating equations for marginal odds ratio models. Journal of the Statistical Computation and Simulation 1998; 62: 45-72.
    • (1998) Journal of the Statistical Computation and Simulation , vol.62 , pp. 45-72
    • Geys, H.1    Molenberghs, M.2    Lipsitz, S.R.3
  • 34
    • 35648994341 scopus 로고    scopus 로고
    • A simulation study comparing weighted estimating equations with multiple imputation based estimating equations
    • Submitted for publication
    • Beunckens C, Sotto C, Molenberghs G. A simulation study comparing weighted estimating equations with multiple imputation based estimating equations. 2006. Submitted for publication.
    • (2006)
    • Beunckens, C.1    Sotto, C.2    Molenberghs, G.3
  • 35
    • 0026958173 scopus 로고
    • Statistical methods for longitudina, clustered designs with binary responses
    • Neuhaus JM. Statistical methods for longitudina, clustered designs with binary responses. Statistical Methods in Medical Research 1992; 1: 249-73.
    • (1992) Statistical Methods in Medical Research , vol.1 , pp. 249-273
    • Neuhaus, J.M.1
  • 36
    • 0002512643 scopus 로고
    • A comparison of cluster-specific and population-averaged approaches for analyzing correlated binary data
    • Neuhaus JM, Kalbfleisch JD, Hauck WW. A comparison of cluster-specific and population-averaged approaches for analyzing correlated binary data. International Statistical Review 1991; 59: 25-35.
    • (1991) International Statistical Review , vol.59 , pp. 25-35
    • Neuhaus, J.M.1    Kalbfleisch, J.D.2    Hauck, W.W.3
  • 37
    • 0021730579 scopus 로고
    • Random effects models for serial observations with dichotomous response
    • Stiratelli R, Laird N, Ware J. Random effects models for serial observations with dichotomous response. Biometrics 1984; 40: 961-72.
    • (1984) Biometrics , vol.40 , pp. 961-972
    • Stiratelli, R.1    Laird, N.2    Ware, J.3
  • 39
    • 33845330581 scopus 로고
    • A probability distribution derived from the binomial distribution by regarding the probability of success as variable between the sets of trials
    • Skellam JG. A probability distribution derived from the binomial distribution by regarding the probability of success as variable between the sets of trials. Journal of the Royal Statistical Society, Series B 1948; 10: 257-61.
    • (1948) Journal of the Royal Statistical Society, Series B , vol.10 , pp. 257-261
    • Skellam, J.G.1
  • 40
    • 0001986642 scopus 로고    scopus 로고
    • The analysis of longitudinal ordinal data with non-random dropout
    • Molenberghs G, Kenward MG, Lesaffre E. The analysis of longitudinal ordinal data with non-random dropout. Biometrika 1997; 84: 33-44.
    • (1997) Biometrika , vol.84 , pp. 33-44
    • Molenberghs, G.1    Kenward, M.G.2    Lesaffre, E.3
  • 41
    • 35648981014 scopus 로고    scopus 로고
    • A flexible marginal modeling strategy for non-monotone missing data
    • Submitted for Publication
    • Jansen I, Molenberghs G. A flexible marginal modeling strategy for non-monotone missing data. 2006. Submitted for Publication.
    • (2006)
    • Jansen, I.1    Molenberghs, G.2
  • 42
    • 0001885521 scopus 로고
    • Regression analysis for categorical variables with outcome subject to non-ignorable non-response
    • Baker SG, Laird NM. Regression analysis for categorical variables with outcome subject to non-ignorable non-response. Journal of the American Statistical Association, 1988; 83: 62-9.
    • (1988) Journal of the American Statistical Association , vol.83 , pp. 62-69
    • Baker, S.G.1    Laird, N.M.2
  • 44
    • 0001832523 scopus 로고
    • Estimating gross flows using panel data with nonresponse: An example from the Canadian Labour Force Survey
    • Stasny EA. Estimating gross flows using panel data with nonresponse: an example from the Canadian Labour Force Survey. Journal of the American Statistical Association 1986; 81: 42-7.
    • (1986) Journal of the American Statistical Association , vol.81 , pp. 42-47
    • Stasny, E.A.1
  • 45
    • 0001041302 scopus 로고
    • The analysis of repeated categorical measurements subject to nonignorable nonresponse
    • Conaway MR. The analysis of repeated categorical measurements subject to nonignorable nonresponse. Journal of the American Statistical Association 1992; 87: 817-24.
    • (1992) Journal of the American Statistical Association , vol.87 , pp. 817-824
    • Conaway, M.R.1
  • 46
    • 21144479548 scopus 로고
    • Non-ignorable non-response models for time-ordered categorical variables
    • Conaway MR. Non-ignorable non-response models for time-ordered categorical variables. Applied Statistics 1993; 42: 105-15.
    • (1993) Applied Statistics , vol.42 , pp. 105-115
    • Conaway, M.R.1
  • 47
    • 0029098494 scopus 로고
    • Marginal regression for repeated binary data with outcome subject to non-ignorable non-response
    • Baker SG. Marginal regression for repeated binary data with outcome subject to non-ignorable non-response. Biometrics 1995; 51: 1042-52.
    • (1995) Biometrics , vol.51 , pp. 1042-1052
    • Baker, S.G.1
  • 48
    • 0026550210 scopus 로고
    • Closed-form estimates for missing counts in two-way contingency tables
    • Baker SG, Rosenberger WF, DerSimonian R. Closed-form estimates for missing counts in two-way contingency tables. Statistics in Medicine 1992; 11: 643-57.
    • (1992) Statistics in Medicine , vol.11 , pp. 643-657
    • Baker, S.G.1    Rosenberger, W.F.2    DerSimonian, R.3
  • 52
    • 0034557672 scopus 로고    scopus 로고
    • The milk protein trial: Influence analysis of the dropout process
    • Thijs H, Molenberghs G, Verbeke G. The milk protein trial: influence analysis of the dropout process. Biometrical Journal 2000; 42: 617-46.
    • (2000) Biometrical Journal , vol.42 , pp. 617-646
    • Thijs, H.1    Molenberghs, G.2    Verbeke, G.3
  • 58
    • 0037197628 scopus 로고    scopus 로고
    • Selection models and pattern-mixture models to analyze longitudinal quality of life data subject to dropout
    • Michiels B, Molenberghs G, Bijnens L, Vangeneugden T, Thijs H. Selection models and pattern-mixture models to analyze longitudinal quality of life data subject to dropout. Statistics in Medicine 2002; 21: 1023-41.
    • (2002) Statistics in Medicine , vol.21 , pp. 1023-1041
    • Michiels, B.1    Molenberghs, G.2    Bijnens, L.3    Vangeneugden, T.4    Thijs, H.5
  • 59
    • 0002373852 scopus 로고
    • (discussion to Diggle PJ, Kenward MG) Informative dropout in longitudinal data analysis
    • Laird NM. (discussion to Diggle PJ, Kenward MG) Informative dropout in longitudinal data analysis. Applied Statistics 1994; 43: 84.
    • (1994) Applied Statistics , vol.43 , pp. 84
    • Laird, N.M.1
  • 60
    • 0002373853 scopus 로고
    • Informative dropout in longitudinal data analysis (discussion to Diggle PJ, Kenward MG)
    • Rubin DB. Informative dropout in longitudinal data analysis (discussion to Diggle PJ, Kenward MG). Applied Statistics 1994; 43: 80-2.
    • (1994) Applied Statistics , vol.43 , pp. 80-82
    • Rubin, D.B.1
  • 63
    • 84952094529 scopus 로고
    • Detection of influential observations in linear regression
    • Cook RD. Detection of influential observations in linear regression. Technometrics 1977; 19: 15-18.
    • (1977) Technometrics , vol.19 , pp. 15-18
    • Cook, R.D.1
  • 65
  • 66
    • 0031744665 scopus 로고    scopus 로고
    • Local influence in linear mixed models
    • Lesaffre E, Verbeke G. Local influence in linear mixed models. Biometrics 1998; 54: 570-82.
    • (1998) Biometrics , vol.54 , pp. 570-582
    • Lesaffre, E.1    Verbeke, G.2
  • 68
    • 0001354633 scopus 로고
    • Formalizing subjective notions about the effect of nonrespondents in sample surveys
    • Rubin DB. Formalizing subjective notions about the effect of nonrespondents in sample surveys. Journal of the American Statistical Association 1977; 72: 538-43.
    • (1977) Journal of the American Statistical Association , vol.72 , pp. 538-543
    • Rubin, D.B.1
  • 69
    • 0003129721 scopus 로고
    • Selection m,odelling versus mixture modelling with nonignorable nonresponse
    • Wainer, H ed, Springer Verlag
    • Glynn RJ, Laird NM, Rubin DB. Selection m,odelling versus mixture modelling with nonignorable nonresponse. In Wainer, H ed. Drawing Inferences from Self-Selected Samples. Springer Verlag 1986; 115-42.
    • (1986) Drawing Inferences from Self-Selected Samples , pp. 115-142
    • Glynn, R.J.1    Laird, N.M.2    Rubin, D.B.3
  • 70
    • 0031032359 scopus 로고    scopus 로고
    • Mixture models for the joint distribution of repeated measures and event times
    • Hogan JW, Laird NM. Mixture models for the joint distribution of repeated measures and event times. Statistics in Medicine 1997; 16: 239-58.
    • (1997) Statistics in Medicine , vol.16 , pp. 239-258
    • Hogan, J.W.1    Laird, N.M.2
  • 71
    • 0034994805 scopus 로고    scopus 로고
    • The practical use of different strategies to handle dropout in longitudinal studies
    • Verbeke G, Lesaffre E, Spiessens B. The practical use of different strategies to handle dropout in longitudinal studies. Drug Information Journal 2001; 35: 419-34.
    • (2001) Drug Information Journal , vol.35 , pp. 419-434
    • Verbeke, G.1    Lesaffre, E.2    Spiessens, B.3
  • 72
    • 0032885858 scopus 로고    scopus 로고
    • Selection models and pattern-mixture models for incomplete categorical data with covariates
    • Molenberghs G, Michiels B, Lipsitz SR. Selection models and pattern-mixture models for incomplete categorical data with covariates. Biometrics 1999; 55: 978-83.
    • (1999) Biometrics , vol.55 , pp. 978-983
    • Molenberghs, G.1    Michiels, B.2    Lipsitz, S.R.3
  • 75
    • 0001010853 scopus 로고
    • On structural equation modeling with data that are not missing completely at random
    • Muthén B, Kaplan D, Hollis M. On structural equation modeling with data that are not missing completely at random. Psychometrika 1987; 52: 431-62.
    • (1987) Psychometrika , vol.52 , pp. 431-462
    • Muthén, B.1    Kaplan, D.2    Hollis, M.3
  • 76
    • 84936025682 scopus 로고
    • Estimation of linear models with incomplete data
    • Allison PD. Estimation of linear models with incomplete data. Sociology Methodology 1987; 71-103.
    • (1987) Sociology Methodology , pp. 71-103
    • Allison, P.D.1
  • 77
    • 0026497615 scopus 로고
    • Modeling incomplete longitudinal and crosssectional data using latent growth structural models
    • McArdle JJ, Hamagami F. Modeling incomplete longitudinal and crosssectional data using latent growth structural models. Experimental Aging Research 1992; 18: 145-66.
    • (1992) Experimental Aging Research , vol.18 , pp. 145-166
    • McArdle, J.J.1    Hamagami, F.2
  • 78
    • 0029995115 scopus 로고    scopus 로고
    • Pattern-mixture models for multivariate incomplete data with covariates
    • Little RJA, Wang Y. Pattern-mixture models for multivariate incomplete data with covariates. Biometrics 1996; 52: 98-111.
    • (1996) Biometrics , vol.52 , pp. 98-111
    • Little, R.J.A.1    Wang, Y.2
  • 79
    • 0002105479 scopus 로고    scopus 로고
    • Application of random-effects pattern-mixture models for missing data in longitudinal studies
    • Hedeker D, Gibbons RD. Application of random-effects pattern-mixture models for missing data in longitudinal studies. Psychological Methods 1997; 2: 64-78.
    • (1997) Psychological Methods , vol.2 , pp. 64-78
    • Hedeker, D.1    Gibbons, R.D.2
  • 80
    • 0041175330 scopus 로고    scopus 로고
    • The muscatine children's obesity data reanalysed using pattern mixture models
    • Ekholm A, Skinner C. The muscatine children's obesity data reanalysed using pattern mixture models. Applied Statistics 1998; 47: 251-63.
    • (1998) Applied Statistics , vol.47 , pp. 251-263
    • Ekholm, A.1    Skinner, C.2
  • 81
    • 0032353609 scopus 로고    scopus 로고
    • Pseudo-likelihood for combined selection and pattern-mixture models for missing data problems
    • Molenberghs G, Michiels B, Kenward MG. Pseudo-likelihood for combined selection and pattern-mixture models for missing data problems. Biometrical Journal 1998; 40: 557-72.
    • (1998) Biometrical Journal , vol.40 , pp. 557-572
    • Molenberghs, G.1    Michiels, B.2    Kenward, M.G.3
  • 82
    • 0033571770 scopus 로고    scopus 로고
    • Simple pattern-mixture models for longitudinal data with missing observations: Analysis of urinary incontinence data
    • Park T, Lee S-L. Simple pattern-mixture models for longitudinal data with missing observations: analysis of urinary incontinence data. Statistics in Medicine 1999; 18: 2933-41.
    • (1999) Statistics in Medicine , vol.18 , pp. 2933-2941
    • Park, T.1    Lee, S.-L.2
  • 84
    • 0031319752 scopus 로고    scopus 로고
    • Analysis of nonrandomly censored ordered categorical longitudinal data from analgesic trials
    • Sheiner LB, Beal SL, Dunne A. Analysis of nonrandomly censored ordered categorical longitudinal data from analgesic trials. Journal of the American Statistical Association 1997; 92: 1235-44.
    • (1997) Journal of the American Statistical Association , vol.92 , pp. 1235-1244
    • Sheiner, L.B.1    Beal, S.L.2    Dunne, A.3
  • 85
    • 0034994805 scopus 로고    scopus 로고
    • The practical use of different strategies to handle dropout in longitudinal studies
    • Verbeke, Lesaffre, Spiessens B. (2001) The practical use of different strategies to handle dropout in longitudinal studies. Drug Information Journal 35: 419-34.
    • (2001) Drug Information Journal , vol.35 , pp. 419-434
    • Verbeke, L.1    Spiessens, B.2
  • 86
    • 0141899476 scopus 로고    scopus 로고
    • Likelihood-based inference with singular information matrix
    • Rotnitzky A, Cox DR, Bottai M, Robins J. Likelihood-based inference with singular information matrix. Bernouilli 2000; 6: 243-84.
    • (2000) Bernouilli , vol.6 , pp. 243-284
    • Rotnitzky, A.1    Cox, D.R.2    Bottai, M.3    Robins, J.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.