-
1
-
-
84889235307
-
Quantum entanglement and projective ring geometry
-
Planat M, Saniga M and Kibler M R 2006 Quantum entanglement and projective ring geometry SIGMA 2 066
-
(2006)
SIGMA
, vol.2
, pp. 066
-
-
Planat, M.1
Saniga, M.2
Kibler, M.R.3
-
3
-
-
34547813188
-
Multiple qubits as symplectic polar spaces of order two
-
Saniga M and Planat M 2007 Multiple qubits as symplectic polar spaces of order two Adv. Stud. Theor. Phys. 1 1-4
-
(2007)
Adv. Stud. Theor. Phys.
, vol.1
, pp. 1-4
-
-
Saniga, M.1
Planat, M.2
-
4
-
-
35648950693
-
-
Havlicek H 2007 A mathematician's insight into the Saniga-Planat theorem (available on-line from http://www.geometrie.tuwien.ac.at/havlicek/talks.html)
-
(2007)
-
-
Havlicek, H.1
-
5
-
-
41549107985
-
Multi-line geometry of qubit/qutrit and higher order Pauli operators
-
Planat M, Baboin A C and Saniga M 2007 Multi-line geometry of qubit/qutrit and higher order Pauli operators Int. J. Theor. Phys. DOI 10.1007/s10773-007-9541-9 (Preprint quant-ph/0705.2538)
-
(2007)
Int. J. Theor. Phys.
-
-
Planat, M.1
Baboin, A.C.2
Saniga, M.3
-
7
-
-
34547801770
-
Quantum systems in finite Hilbert space: Galois fields in quantum mechanics
-
Vourdas A 2007 Quantum systems in finite Hilbert space: Galois fields in quantum mechanics J. Phys. A: Math. Theor. 40 R285-331
-
(2007)
J. Phys. A: Math. Theor.
, vol.40
-
-
Vourdas, A.1
-
10
-
-
84983110993
-
Fault-tolerant quantum computation with higher-dimensional systems
-
Gottesman D 1998 Fault-tolerant quantum computation with higher-dimensional systems Lect. Notes Comput. Sci. 1509 302-13
-
(1998)
Lect. Notes Comput. Sci.
, vol.1509
, pp. 302-313
-
-
Gottesman, D.1
-
12
-
-
26044454623
-
Mutually unbiased phase states, phase uncertainties and Gauss sums
-
Planat M and Rosu H C 2005 Mutually unbiased phase states, phase uncertainties and Gauss sums Eur. Phys. J. D 36 133-9
-
(2005)
Eur. Phys. J.
, vol.36
, Issue.1
, pp. 133-139
-
-
Planat, M.1
Rosu, H.C.2
-
13
-
-
33646704752
-
R Nice error bases, mutually unbiased bases, induced representations, the Heisenberg group and finite geometries
-
Howe 2005 R Nice error bases, mutually unbiased bases, induced representations, the Heisenberg group and finite geometries Indag. Math. N. S. 16 553-83
-
(2005)
Indag. Math. N. S.
, vol.16
, Issue.3-4
, pp. 553-583
-
-
Howe1
-
14
-
-
33744531267
-
Huyghens, Bohr, Riemann and Galois: Phase-locking
-
Planat M 2006 Huyghens, Bohr, Riemann and Galois: phase-locking Int. J. Mod. Phys. B 20 1833-50
-
(2006)
Int. J. Mod. Phys.
, vol.20
, pp. 1833-1850
-
-
Planat, M.1
-
15
-
-
0039699505
-
Projective representations: I. Projective lines over a ring
-
Blunck A and Havlicek H 2000 Projective representations: I. Projective lines over a ring Abh. Math. Sem. Univ. Hamburg 70 287-99
-
(2000)
Abh. Math. Sem. Univ. Hamburg
, vol.70
, pp. 287-299
-
-
Blunck, A.1
Havlicek, H.2
-
17
-
-
84889236438
-
2 non-standard bases: The case of mutually unbiased bases
-
2 non-standard bases: the case of mutually unbiased bases SIGMA 3 076
-
(2007)
SIGMA
, vol.3
, pp. 076
-
-
Albouy, O.1
Kibler, M.R.2
-
19
-
-
26444514403
-
On the power of random bases in Fourier sampling: Hidden subgroup problem in the Heisenberg group
-
Radhakrishnan J, Rötteler M and Sen P 2005 On the power of random bases in Fourier sampling: hidden subgroup problem in the Heisenberg group Lect. Notes Comput. Sci. 3580 1399-411
-
(2005)
Lect. Notes Comput. Sci.
, vol.3580
, pp. 1399-1411
-
-
Radhakrishnan, J.1
Rötteler, M.2
Sen, P.3
|