-
4
-
-
2642588230
-
The quantum query complexity of the hidden subgroup problem is polynomial
-
[EHK04]. See also ArXiv preprint quant-ph/0401083
-
[EHK04] M. Ettinger, P. Høyer, and E. Knill. The quantum query complexity of the hidden subgroup problem is polynomial. Information Processing Letters, 91(1):43-48, 2004. See also ArXiv preprint quant-ph/0401083.
-
(2004)
Information Processing Letters
, vol.91
, Issue.1
, pp. 43-48
-
-
Ettinger, M.1
Høyer, P.2
Knill, E.3
-
6
-
-
0345731469
-
Pseudo-random unitary operators for quantum information processing
-
+03]
-
+03] J. Emerson, Y. Weinstein, M. Saraceno, S. Lloyd, and D. Cory. Pseudo-Random unitary operators for quantum information processing. Science, 302:2098-2100, 2003.
-
(2003)
Science
, vol.302
, pp. 2098-2100
-
-
Emerson, J.1
Weinstein, Y.2
Saraceno, M.3
Lloyd, S.4
Cory, D.5
-
7
-
-
0037770162
-
Hidden translation and orbit coset in quantum computing
-
+03]
-
+03] K. Friedl, G. Ivanyos, F. Magniez, M. Santha, and P. Sen. Hidden translation and orbit coset in quantum computing. In Proceedings of the Symposium on Theory of Computing (STOC), pages 1-9, 2003.
-
(2003)
Proceedings of the Symposium on Theory of Computing (STOC)
, pp. 1-9
-
-
Friedl, K.1
Ivanyos, G.2
Magniez, F.3
Santha, M.4
Sen, P.5
-
8
-
-
4043084179
-
Quantum solution to the hidden subgroup problem for poly-near-Hamiltonian groups
-
[Gav04]
-
[Gav04] D. Gavinsky. Quantum solution to the hidden subgroup problem for poly-near-Hamiltonian groups. Quantum Information and Computation, 4(3):229-235, 2004.
-
(2004)
Quantum Information and Computation
, vol.4
, Issue.3
, pp. 229-235
-
-
Gavinsky, D.1
-
9
-
-
2542631212
-
Quantum mechanical algorithms for the nonabelian hidden subgroup problem
-
[GSVV04]
-
[GSVV04] M. Grigni, L. Schulman, M. Vazirani, and U. Vazirani. Quantum mechanical algorithms for the nonabelian hidden subgroup problem. Combinatorica, pages 137-154, 2004.
-
(2004)
Combinatorica
, pp. 137-154
-
-
Grigni, M.1
Schulman, L.2
Vazirani, M.3
Vazirani, U.4
-
10
-
-
0141534114
-
The hidden subgroup problem and quantum computation using group representations
-
[HRTS03]
-
[HRTS03] S. Hallgren, A. Russell, and A. Ta-Shma. The Hidden Subgroup Problem and Quantum Computation Using Group Representations. SIAM Journal on Computing, 32(4):916-934, 2003.
-
(2003)
SIAM Journal on Computing
, vol.32
, Issue.4
, pp. 916-934
-
-
Hallgren, S.1
Russell, A.2
Ta-Shma, A.3
-
15
-
-
0003993744
-
-
[Mat02]. Graduate Texts in Mathematics. Springer-Verlag
-
[Mat02] J. Matoušek. Lectures on Discrete Geometry. Graduate Texts in Mathematics. Springer-Verlag, 2002.
-
(2002)
Lectures on Discrete Geometry
-
-
Matoušek, J.1
-
17
-
-
1842538776
-
The power of basis selection in fourier sampling: Hidden subgroup problems in affine groups
-
[MRRS04]. ArXiv preprint quant-ph/0503095
-
[MRRS04] C. Moore, D. Rockmore, A. Russell, and L. Schulman. The power of basis selection in Fourier sampling: hidden subgroup problems in affine groups. In Proceedings of the Fifteenth Annual ACM-SIAM Symposium on Discrete Algorithms (SODA'04), pages 1113-1122, 2004. ArXiv preprint quant-ph/0503095.
-
(2004)
Proceedings of the Fifteenth Annual ACM-SIAM Symposium on Discrete Algorithms (SODA'04)
, pp. 1113-1122
-
-
Moore, C.1
Rockmore, D.2
Russell, A.3
Schulman, L.4
-
20
-
-
0004586188
-
Optimal state-determination by mutually unbiased measurements
-
[WF89]
-
[WF89] W. Wootters and B. Fields. Optimal state-determination by mutually unbiased measurements. Ann. Physics, 191(2):363-381, 1989.
-
(1989)
Ann. Physics
, vol.191
, Issue.2
, pp. 363-381
-
-
Wootters, W.1
Fields, B.2
|