메뉴 건너뛰기




Volumn 35, Issue 6, 2008, Pages 1789-1812

A mathematical framework to optimize ATR systems with non-declarations and sensor fusion

Author keywords

Automatic target recognition (ATR); Classifier performance; Combat identification (CID); Mixed variable optimization; Receiver operating characteristic (ROC) curve; Rejection; Sensor fusion

Indexed keywords

DECISION THEORY; MATHEMATICAL PROGRAMMING; NUMERICAL METHODS; SENSOR DATA FUSION;

EID: 35448983941     PISSN: 03050548     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.cor.2006.09.012     Document Type: Article
Times cited : (7)

References (42)
  • 1
    • 3843102571 scopus 로고    scopus 로고
    • A mathematical framework for the optimization of rejection and ROC thresholds in the fusion of correlated sensor data
    • Laine T.I., and Bauer K.W. A mathematical framework for the optimization of rejection and ROC thresholds in the fusion of correlated sensor data. Proceedings of SPIE 5434 (2004) 37-48
    • (2004) Proceedings of SPIE , vol.5434 , pp. 37-48
    • Laine, T.I.1    Bauer, K.W.2
  • 2
    • 35448958083 scopus 로고    scopus 로고
    • Laine TI. Optimization of automatic target recognition with a reject option using fusion and correlated sensor data, PhD dissertation, Air Force Institute of Technology, Wright-Patterson AFB, OH, 2005.
  • 3
    • 35448970201 scopus 로고    scopus 로고
    • Department of the Air Force (DAF). Air Warfare. AFDD2-1, Washington, DC: HQ USAF; 2000.
  • 4
    • 35448946450 scopus 로고    scopus 로고
    • Department of the Air Force (DAF). USAF intelligence targeting guide. AFP 14-210. Washington, DC: HQ USAF; 1998.
  • 5
    • 35448960817 scopus 로고    scopus 로고
    • Alsing SG. The evaluation of competing classifiers. PhD dissertation, Air Force Institute of Technology, Wright-Patterson AFB, OH, 2000.
  • 6
    • 35448966617 scopus 로고    scopus 로고
    • Albrecht TW. Combat identification with sequential observations, rejection option, and out-of-library targets. PhD dissertation, Air Force Institute of Technology, Wright-Patterson AFB, OH, 2005.
  • 7
    • 35448971879 scopus 로고    scopus 로고
    • Department of the Air Force (DAF). Intelligence, surveillance, and reconnaissance operations. AFDD2-5.2. Washington; DC: HQ USAF; 1999.
  • 8
    • 35449004517 scopus 로고    scopus 로고
    • Hall DL, Llinas J, editors. Handbook of multisensor data fusion. New York: CRC Press; 2001.
  • 11
    • 0014710323 scopus 로고
    • On optimum rejection error and reject tradeoff
    • Chow C.K. On optimum rejection error and reject tradeoff. IEEE Transactions on Information Theory IT-16 (1970) 41-46
    • (1970) IEEE Transactions on Information Theory , vol.IT-16 , pp. 41-46
    • Chow, C.K.1
  • 13
    • 0034559464 scopus 로고    scopus 로고
    • Reject option with multiple thresholds
    • Fumera G., Roli F., and Giorgio G. Reject option with multiple thresholds. Pattern Recognition 33 (2000) 2099-2101
    • (2000) Pattern Recognition , vol.33 , pp. 2099-2101
    • Fumera, G.1    Roli, F.2    Giorgio, G.3
  • 14
    • 35448997346 scopus 로고    scopus 로고
    • Haspert KJ. Optimum ID sensor fusion for multiple target types. Institute for Defense Analysis (IDA) Document D-2451, Virginia, March 2000.
  • 16
    • 0032691512 scopus 로고    scopus 로고
    • Three-dimensional receiver operating characteristic trajectory concepts for the evaluation of target recognition algorithms faced with the unknown target detection problem
    • Alsing S.G., Blasch E.P., and Bauer K.W. Three-dimensional receiver operating characteristic trajectory concepts for the evaluation of target recognition algorithms faced with the unknown target detection problem. Proceedings of SPIE 3718 (1999) 449-458
    • (1999) Proceedings of SPIE , vol.3718 , pp. 449-458
    • Alsing, S.G.1    Blasch, E.P.2    Bauer, K.W.3
  • 20
    • 0003562954 scopus 로고    scopus 로고
    • A simple generalisation of the area under the ROC curve for multiple class classification problems
    • Hand D.J., and Till R.J. A simple generalisation of the area under the ROC curve for multiple class classification problems. Machine Learning 45 (2001) 171-186
    • (2001) Machine Learning , vol.45 , pp. 171-186
    • Hand, D.J.1    Till, R.J.2
  • 21
    • 35448959304 scopus 로고    scopus 로고
    • Varner T. ACE TestJig evaluation metrics. Jacobs Sverdrup Working Papers, AFRL COMPASE Center, Wright-Patterson AFB, OH, 2002.
  • 22
    • 0036907284 scopus 로고    scopus 로고
    • Performance measures for summarizing confusion matrices-the AFRL COMPASE approach
    • Ross T.D., Westerkamp L.A., Dilsavor R.L., and Mossing J.C. Performance measures for summarizing confusion matrices-the AFRL COMPASE approach. Proceedings of SPIE 4727 (2002) 310-321
    • (2002) Proceedings of SPIE , vol.4727 , pp. 310-321
    • Ross, T.D.1    Westerkamp, L.A.2    Dilsavor, R.L.3    Mossing, J.C.4
  • 23
    • 33144469118 scopus 로고    scopus 로고
    • Input feature selection for automatic target recognition of temporal data
    • Laine T.I., and Bauer K.W. Input feature selection for automatic target recognition of temporal data. Military Operations Research Journal 10 2 (2005) 51-65
    • (2005) Military Operations Research Journal , vol.10 , Issue.2 , pp. 51-65
    • Laine, T.I.1    Bauer, K.W.2
  • 24
    • 35449004912 scopus 로고    scopus 로고
    • Sadowski C. Measuring Combat Identification, presentation, 69th MORS symposium, Annapolis MD, June 2001.
  • 25
    • 0035238782 scopus 로고    scopus 로고
    • Pattern search algorithms for mixed variable programming
    • Audet C., and Dennis J.E. Pattern search algorithms for mixed variable programming. SIAM Journal of Optimization, 11 3 (2000) 573-594
    • (2000) SIAM Journal of Optimization , vol.11 , Issue.3 , pp. 573-594
    • Audet, C.1    Dennis, J.E.2
  • 26
    • 35448978343 scopus 로고    scopus 로고
    • Abramson MA. Pattern search algorithms for mixed variable general constrained optimization problems. PhD thesis, Department of Computational and Applied Mathematics, Rice University, Houston TX, August 2002.
  • 27
    • 35448974110 scopus 로고    scopus 로고
    • Sriver TA. Pattern search ranking and selection algorithms for mixed-variable optimization of stochastic systems. Dissertation, Air Force Institute of Technology, Wright-Patterson AFB OH, 2004.
  • 30
    • 35448973325 scopus 로고    scopus 로고
    • An investigation on the effects of correlation and autocorrelation on classifier fusion and optimal classifier ensembles
    • ASME Press, New York
    • Leap N.J., Clemans P.P., Bauer K.W., and Oxley M.E. An investigation on the effects of correlation and autocorrelation on classifier fusion and optimal classifier ensembles. Intelligent Engineering Systems through ANNs vol. 14 (2004), ASME Press, New York 627-632
    • (2004) Intelligent Engineering Systems through ANNs , vol.14 , pp. 627-632
    • Leap, N.J.1    Clemans, P.P.2    Bauer, K.W.3    Oxley, M.E.4
  • 31
    • 35449006701 scopus 로고    scopus 로고
    • Mindrup FM. An investigation of the effects of correlation and autocorrelation on classifier fusion with non-declarations. Thesis AFIT/GOR/ENS/05-13, Air Force Institute of Technology, Wright-Patterson AFB OH, 2005.
  • 32
    • 35448988516 scopus 로고    scopus 로고
    • Çetin M. Feature-enhanced synthetic aperture radar imaging. Dissertation, Boston University, Boston MA, 2001.
  • 33
  • 36
    • 35448933641 scopus 로고    scopus 로고
    • Mitchell RA, Westerkamp JJ. A statistical feature based classifier for robust high range resolution radar target identification. Technial report, AFRL/SN, WPAFB OH, 1998.
  • 38
    • 35449007276 scopus 로고    scopus 로고
    • Robinson GS, Aboutalib AO. Trade-off analysis of multisensor fusion levels. Proceedings of the second national symposium on sensors and sensor fusion GACIAC PR-89-01, Chicago, IL, 1990, pp. 21-34.
  • 39
    • 0030735959 scopus 로고    scopus 로고
    • An introduction to multisensor data fusion
    • Hall D.L., and Llinas J. An introduction to multisensor data fusion. Proceedings of the IEEE 85 1 (1997) 6-23
    • (1997) Proceedings of the IEEE , vol.85 , Issue.1 , pp. 6-23
    • Hall, D.L.1    Llinas, J.2
  • 40
    • 0025206332 scopus 로고
    • Probabilistic neural networks
    • Specht D.F. Probabilistic neural networks. Neural Networks 3 (1990) 109-118
    • (1990) Neural Networks , vol.3 , pp. 109-118
    • Specht, D.F.1
  • 42
    • 35448932824 scopus 로고    scopus 로고
    • Top ten secrets to success with optimization
    • 25-26
    • Brown G.G. Top ten secrets to success with optimization. Phalanx 37 4 (2004) 12-13 25-26
    • (2004) Phalanx , vol.37 , Issue.4 , pp. 12-13
    • Brown, G.G.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.