메뉴 건너뛰기




Volumn 10, Issue 2, 2005, Pages 51-65

Input feature selection for automatic target recognition of temporal data

Author keywords

Automatic Target Recognition; Combat ID; Feature Saliency; Feature Selection; Neural Networks; Pattern Recognition; Recurrent Neural Networks; Sensor Fusion

Indexed keywords


EID: 33144469118     PISSN: 02755823     EISSN: None     Source Type: Journal    
DOI: 10.5711/morj.10.2.51     Document Type: Article
Times cited : (4)

References (42)
  • 1
    • 0342546478 scopus 로고    scopus 로고
    • Feature screening using signal-to-noise ratios
    • Bauer, K.W., Alsing, S.G. and Greene, K.A. "Feature screening using signal-to-noise ratios," Neurocomputing, Vol. 31: 29-44 (2000).
    • (2000) Neurocomputing , vol.31 , pp. 29-44
    • Bauer, K.W.1    Alsing, S.G.2    Greene, K.A.3
  • 3
    • 84867640289 scopus 로고    scopus 로고
    • Networks and adaptive state transitions
    • Kolen, J.F. and Kremer, S.C. (ed.). New York, NY: IEEE Press: 15-25
    • Calvert, D. and Kremer, S.C. "Networks and Adaptive State Transitions," A Field Guide to Dynamical Neural Networks, Kolen, J.F. and Kremer, S.C. (ed.). New York, NY: IEEE Press: 15-25 (2001).
    • (2001) A Field Guide to Dynamical Neural Networks
    • Calvert, D.1    Kremer, S.C.2
  • 4
    • 0034061686 scopus 로고    scopus 로고
    • Variable selection using neural-network models
    • Castellano, G. and Fanelli, A.M. "Variable selection using neural-network models," Neurocomputing, Vol. 31: 1-13 (2000).
    • (2000) Neurocomputing , vol.31 , pp. 1-13
    • Castellano, G.1    Fanelli, A.M.2
  • 5
    • 0036152401 scopus 로고    scopus 로고
    • Statistical characterization and modeling of SAR images
    • Chitroub, S., Houacine, A. and Sansal, B. "Statistical characterization and modeling of SAR images," Signal Processing, Vol. 82: 69-92 (2002).
    • (2002) Signal Processing , vol.82 , pp. 69-92
    • Chitroub, S.1    Houacine, A.2    Sansal, B.3
  • 6
    • 0030781756 scopus 로고    scopus 로고
    • The fusion of different resolution SAR images
    • Costantini, M., Farina, A. and Zirilli, F. "The fusion of different resolution SAR images," Proceedings of the IEEE, Vol. 85, No. 1: 139-146 (1997).
    • (1997) Proceedings of the IEEE , vol.85 , Issue.1 , pp. 139-146
    • Costantini, M.1    Farina, A.2    Zirilli, F.3
  • 7
    • 0030830419 scopus 로고    scopus 로고
    • Sensor fusion potential exploitation - Innovative architectures and illustrative applications
    • Dasarathy, B.V. "Sensor Fusion Potential Exploitation - Innovative Architectures and Illustrative Applications," Proceedings of the IEEE, Vol. 85, No. 1: 24-38 (1997).
    • (1997) Proceedings of the IEEE , vol.85 , Issue.1 , pp. 24-38
    • Dasarathy, B.V.1
  • 8
    • 3843058242 scopus 로고    scopus 로고
    • AFDD2-1. Washington, D.C.: HQ USAF
    • Dept. of the AF. Air Warfare. AFDD2-1. Washington, D.C.: HQ USAF, 2000.
    • (2000) Air Warfare
  • 10
    • 3843136509 scopus 로고    scopus 로고
    • AFP 14-210. Washington, D.C.: HQ USAF
    • Dept. of the AF. USAF Intelligence Targeting Guide. AFP 14-210. Washington, D.C.: HQ USAF, 1998.
    • (1998) USAF Intelligence Targeting Guide
  • 11
    • 26444565569 scopus 로고
    • Finding structure in time
    • Elman, J.L. "Finding Structure in Time," Cognitive Science, Vol. 14: 179-211 (1990).
    • (1990) Cognitive Science , vol.14 , pp. 179-211
    • Elman, J.L.1
  • 12
    • 0036193080 scopus 로고    scopus 로고
    • A methodology to explain neural network classification
    • Feraud, R. and Clerot, F. "A methodology to explain neural network classification," Neural Networks, Vol. 15: 237-246 (2002).
    • (2002) Neural Networks , vol.15 , pp. 237-246
    • Feraud, R.1    Clerot, F.2
  • 14
    • 0033686953 scopus 로고    scopus 로고
    • Selection of psychophysiological features for classifying air traffic controller workload in neural networks
    • Greene, K.A., Bauer, K.W., Wilson, G.F., Russell, C.A., Rogers, S.K. and Kabrisky, M. "Selection of psychophysiological features for classifying air traffic controller workload in neural networks," Smart Eng. Sys. Design, Vol. 2: 315-330 (2000).
    • (2000) Smart Eng. Sys. Design , vol.2 , pp. 315-330
    • Greene, K.A.1    Bauer, K.W.2    Wilson, G.F.3    Russell, C.A.4    Rogers, S.K.5    Kabrisky, M.6
  • 15
    • 85152319530 scopus 로고    scopus 로고
    • Hall, D.L. and Llinas, J. (eds.). New York: CRC Press
    • Hall, D.L. and Llinas, J. (eds.). Handbook of Multisensor Data Fusion. New York: CRC Press, 2001.
    • (2001) Handbook of Multisensor Data Fusion
  • 16
    • 0030735959 scopus 로고    scopus 로고
    • An introduction to multisensor data fusion
    • Hall, D.L. and Llinas, J. "An Introduction to Multisensor Data Fusion," Proceedings of the IEEE, Vol. 85, No. 1: 6-23 (1997).
    • (1997) Proceedings of the IEEE , vol.85 , Issue.1 , pp. 6-23
    • Hall, D.L.1    Llinas, J.2
  • 18
    • 0024880831 scopus 로고
    • Multilayer feedforward networks are universal approximators
    • Hornik, K., Stinchcombe, M. and White, H. "Multilayer feedforward networks are universal approximators," Neural Networks, Vol. 2: 359-368 (1989).
    • (1989) Neural Networks , vol.2 , pp. 359-368
    • Hornik, K.1    Stinchcombe, M.2    White, H.3
  • 19
    • 0025627940 scopus 로고
    • Universal approximation of an unknown mapping and its derivatives using multilayer feedforward networks
    • Hornik, K., Stinchcombe, M. and White, H. "Universal approximation of an unknown mapping and its derivatives using multilayer feedforward networks," Neural Networks, Vol. 3: 551-560 (1990).
    • (1990) Neural Networks , vol.3 , pp. 551-560
    • Hornik, K.1    Stinchcombe, M.2    White, H.3
  • 20
    • 0035694667 scopus 로고    scopus 로고
    • An adaptive classifier design for high-dimensional data analysis with a limited training data set
    • Jackson, Q. and Landgrebe, D. "An adaptive classifier design for high-dimensional data analysis with a limited training data set," IEEE Trans. on Geoscience and Remote Sensing, Vol. 39, No. 12: 2664-2679 (2001).
    • (2001) IEEE Trans. on Geoscience and Remote Sensing , vol.39 , Issue.12 , pp. 2664-2679
    • Jackson, Q.1    Landgrebe, D.2
  • 21
    • 0031997059 scopus 로고    scopus 로고
    • Supervised classification in high-dimensional space: Geometrical, statistical, and asymptotical properties of multivariate data
    • Jimenez, L.O. and Landgrebe, D.A. "Supervised classification in high-dimensional space: geometrical, statistical, and asymptotical properties of multivariate data," IEEE Trans. on Sys., Man and Cybernetics C, Vol. 28, No. 1: 39-54 (1998).
    • (1998) IEEE Trans. on Sys., Man and Cybernetics C , vol.28 , Issue.1 , pp. 39-54
    • Jimenez, L.O.1    Landgrebe, D.A.2
  • 22
    • 0029342226 scopus 로고
    • On the computational power of elman-style recurrent networks
    • Kremer, S.C. "On the Computational Power of Elman-Style Recurrent Networks." IEEE Trans. on Neural Networks, Vol. 6, No. 4: 1000-1004 (1995).
    • (1995) IEEE Trans. on Neural Networks , vol.6 , Issue.4 , pp. 1000-1004
    • Kremer, S.C.1
  • 23
    • 0036127473 scopus 로고    scopus 로고
    • Input feature selection for classification problems
    • Kwak, N. and Choi, C.H. "Input feature selection for classification problems," IEEE Trans. on Neural Networks, Vol. 13, No. 1: 143-159 (2002).
    • (2002) IEEE Trans. on Neural Networks , vol.13 , Issue.1 , pp. 143-159
    • Kwak, N.1    Choi, C.H.2
  • 24
    • 0141592439 scopus 로고    scopus 로고
    • Feature selection assessment and comparison using two saliency measures in an elman recurrent neural network
    • IEEE Press
    • Laine, T.I. and Bauer, K.W. "Feature Selection Assessment and Comparison using Two Saliency Measures in an Elman Recurrent Neural Network," Proc. Int'l Joint Conf. on Neural Networks, IEEE Press, 2807-2812 (2003).
    • (2003) Proc. Int'l Joint Conf. on Neural Networks , pp. 2807-2812
    • Laine, T.I.1    Bauer, K.W.2
  • 25
    • 0036881105 scopus 로고    scopus 로고
    • Selection of input features across subjects for classifying crewmember workload using artificial neural networks
    • Laine, T.I., Bauer, K.W., Lanning, J.W., Russel, C.A. and Wilson, G.F. "Selection of input features across subjects for classifying crewmember workload using artificial neural networks," IEEE Trans. on Sys., Man and Cybernetics A, Vol. 32, No. 6: 691-704 (2002).
    • (2002) IEEE Trans. on Sys., Man and Cybernetics A , vol.32 , Issue.6 , pp. 691-704
    • Laine, T.I.1    Bauer, K.W.2    Lanning, J.W.3    Russel, C.A.4    Wilson, G.F.5
  • 26
    • 85032751896 scopus 로고    scopus 로고
    • Hyperspectral image data analysis as a high dimensional signal processing problem
    • Landgrebe, D. "Hyperspectral image data analysis as a high dimensional signal processing problem," IEEE Signal Processing Magazine, Vol. 19, No. 1: 17-28 (2002).
    • (2002) IEEE Signal Processing Magazine , vol.19 , Issue.1 , pp. 17-28
    • Landgrebe, D.1
  • 27
    • 0037204072 scopus 로고    scopus 로고
    • Feature selection based on similarity
    • Lazzerini, B. and Marcelloni, F. "Feature selection based on similarity," Electronics Letters, Vol. 38, No. 3: 121-122 (2002).
    • (2002) Electronics Letters , vol.38 , Issue.3 , pp. 121-122
    • Lazzerini, B.1    Marcelloni, F.2
  • 28
    • 0028496693 scopus 로고
    • Intensity and phase statistics of multilook polarimetic and interferometric SAR imagery
    • Lee, J., Hoppel, K.W., Mango, S.A. and Miller, A.R. "Intensity and phase statistics of multilook polarimetic and interferometric SAR imagery," IEEE Trans. on Geoscience and Remote Sensing, Vol. 32, No. 5: 1017-1028 (1994).
    • (1994) IEEE Trans. on Geoscience and Remote Sensing , vol.32 , Issue.5 , pp. 1017-1028
    • Lee, J.1    Hoppel, K.W.2    Mango, S.A.3    Miller, A.R.4
  • 32
    • 0005901413 scopus 로고    scopus 로고
    • Forecasting the economy with neural nets: A survey of challenges and solutions
    • Orr, G.B. and Muller, K.R. (ed.). NY: Springer: 348-371
    • Moody, J. "Forecasting the economy with neural nets: a survey of challenges and solutions," Neural Networks: tricks of the trade, Orr, G.B. and Muller, K.R. (ed.). NY: Springer: 348-371, 1998.
    • (1998) Neural Networks: Tricks of the Trade
    • Moody, J.1
  • 33
    • 3843090841 scopus 로고    scopus 로고
    • Fundamentals of automatic target recognition
    • SPIE SC 158
    • Nasr, H.N. "Fundamentals of Automatic Target Recognition," Short Course Notes, SPIE SC 158 (2003).
    • (2003) Short Course Notes
    • Nasr, H.N.1
  • 34
    • 0025536870 scopus 로고
    • Improving the learning speed of 2-layer neural networks by choosing initial values of the adaptive weights
    • Nguyen, D. and Widrow, B. "Improving the learning speed of 2-layer neural networks by choosing initial values of the adaptive weights," Proc. Int'l Joint Conf. on Neural Networks, Vol. 3: 21-26 (1990).
    • (1990) Proc. Int'l Joint Conf. on Neural Networks , vol.3 , pp. 21-26
    • Nguyen, D.1    Widrow, B.2
  • 35
    • 0141741865 scopus 로고    scopus 로고
    • Gradient calculations for dynamic recurrent neural networks
    • Kolen, J. and Kremer, S. (ed.). NJ: IEEE Press: 179-206
    • Pearlmutter, B.P. "Gradient calculations for dynamic recurrent neural networks," A Field Guide to Dynamical Neural Networks, Kolen, J. and Kremer, S. (ed.). NJ: IEEE Press: 179-206 (2001).
    • (2001) A Field Guide to Dynamical Neural Networks
    • Pearlmutter, B.P.1
  • 36
    • 0004428920 scopus 로고    scopus 로고
    • Feature selection for financial credit-risk evaluation decisions
    • Piramuthu, S. "Feature selection for financial credit-risk evaluation decisions," INFORMS J. on Computing, Vol. 11, No. 3: 258-266 (1999).
    • (1999) INFORMS J. on Computing , vol.11 , Issue.3 , pp. 258-266
    • Piramuthu, S.1
  • 37
    • 0032671934 scopus 로고    scopus 로고
    • SAR ATR-So what's the problem? - An MSTAR perspective
    • Ross, T., Bradley, J., Hudson, L. and O'Conner, M. "SAR ATR-So what's the problem? - An MSTAR perspective." Proceedings of SPIE Vol. 3721: 662-672 (1999).
    • (1999) Proceedings of SPIE , vol.3721 , pp. 662-672
    • Ross, T.1    Bradley, J.2    Hudson, L.3    O'Conner, M.4
  • 38
    • 69949110912 scopus 로고    scopus 로고
    • Automatic target detection and recognition using synthetic aperture radar imagery
    • Wilkinson, et al. (eds.), National Committee for Radio Science, Australia
    • Schroeder, J. "Automatic target detection and recognition using synthetic aperture radar imagery." Proc. of the 2002 Workshop on the Applications of Radio Science (WARSO2) Conf., Wilkinson, et al. (eds.), National Committee for Radio Science, Australia (2002).
    • (2002) Proc. of the 2002 Workshop on the Applications of Radio Science (WARSO2) Conf.
    • Schroeder, J.1
  • 39
    • 0029521876 scopus 로고
    • Input variable selection for neural networks: Application to predicting the U.S. business cycle
    • New York, NY: IEEE Press
    • Utans, J., Moody, J., Rehfuss, S. and Siegelmann, H., "Input variable selection for neural networks: application to predicting the U.S. business cycle," Proc. of the IEEE/IAFE 1995 CIFE. New York, NY: IEEE Press, 118-122 (1995).
    • (1995) Proc. of the IEEE/IAFE 1995 CIFE , pp. 118-122
    • Utans, J.1    Moody, J.2    Rehfuss, S.3    Siegelmann, H.4
  • 40
    • 0036721934 scopus 로고    scopus 로고
    • Feature selection with neural networks
    • Verikas, A. and Bacauskiene, M. "Feature selection with neural networks," Pattern Rec. Letters, Vol. 23: 1323-1335 (2002).
    • (2002) Pattern Rec. Letters , vol.23 , pp. 1323-1335
    • Verikas, A.1    Bacauskiene, M.2
  • 42
    • 0035294798 scopus 로고    scopus 로고
    • Feature selection using tabu search method
    • Zhang, H. and Sun, G. "Feature selection using tabu search method," Pattern Recognition, Vol. 35: 701-711 (2002).
    • (2002) Pattern Recognition , vol.35 , pp. 701-711
    • Zhang, H.1    Sun, G.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.