-
1
-
-
0001007101
-
-
PRLTAO 0031-9007 10.1103/PhysRevLett.84.2445
-
F. Buatier de Mongeot, G. Costantini, C. Boragno, and U. Valbusa, Phys. Rev. Lett. PRLTAO 0031-9007 10.1103/PhysRevLett.84.2445 84, 2445 (2000).
-
(2000)
Phys. Rev. Lett.
, vol.84
, pp. 2445
-
-
Buatier De Mongeot, F.1
Costantini, G.2
Boragno, C.3
Valbusa, U.4
-
2
-
-
0035796571
-
-
JCOMEL 0953-8984
-
G. Costantini, S. Rusponi, F. B. de Mongeot, C. Boragno, and U. Valbusa, J. Phys.: Condens. Matter JCOMEL 0953-8984 13, 5875 (2001).
-
(2001)
J. Phys.: Condens. Matter
, vol.13
, pp. 5875
-
-
Costantini, G.1
Rusponi, S.2
De Mongeot, F.B.3
Boragno, C.4
Valbusa, U.5
-
3
-
-
42749103704
-
-
PRLTAO 0031-9007 10.1103/PhysRevLett.93.256103
-
A. Molle, F. B. de Mongeot, A. Molinari, F. Xiaerding, C. Boragno, and U. Valbusa, Phys. Rev. Lett. PRLTAO 0031-9007 10.1103/PhysRevLett.93.256103 93, 256103 (2004);
-
(2004)
Phys. Rev. Lett.
, vol.93
, pp. 256103
-
-
Molle, A.1
De Mongeot, F.B.2
Molinari, A.3
Xiaerding, F.4
Boragno, C.5
Valbusa, U.6
-
4
-
-
33645821064
-
-
PRBMDO 0163-1829 10.1103/PhysRevB.73.155418
-
A. Molle, F. Buatier de Mongeot, A. Molinari, C. Boragno, and U. Valbusa, Phys. Rev. B PRBMDO 0163-1829 10.1103/PhysRevB.73.155418 73, 155418 (2006);
-
(2006)
Phys. Rev. B
, vol.73
, pp. 155418
-
-
Molle, A.1
Buatier De Mongeot, F.2
Molinari, A.3
Boragno, C.4
Valbusa, U.5
-
5
-
-
33746807262
-
-
see, also, PRLTAO 0031-9007 10.1103/PhysRevLett.97.056103
-
see, also, F. Buatier de Mongeot, A. Toma, A. Molle, S. Lizzit, L. Petaccia, and A. Baraldi, Phys. Rev. Lett. PRLTAO 0031-9007 10.1103/PhysRevLett. 97.056103 97, 056103 (2006).
-
(2006)
Phys. Rev. Lett.
, vol.97
, pp. 056103
-
-
Buatier De Mongeot, F.1
Toma, A.2
Molle, A.3
Lizzit, S.4
Petaccia, L.5
Baraldi, A.6
-
8
-
-
0031097281
-
-
For reviews, see ADPHAH 0001-8732 10.1080/00018739700101498
-
For reviews, see J. Krug, Adv. Phys. ADPHAH 0001-8732 10.1080/00018739700101498 46, 139 (1997);
-
(1997)
Adv. Phys.
, vol.46
, pp. 139
-
-
Krug, J.1
-
9
-
-
0036788888
-
-
PHYADX 0378-4371 10.1016/S0378-4371(02)01034-8
-
J. Krug, Physica A PHYADX 0378-4371 10.1016/S0378-4371(02)01034-8 313, 47 (2002);
-
(2002)
Physica A
, vol.313
, pp. 47
-
-
Krug, J.1
-
10
-
-
33748049129
-
-
see also, SSREDI 0167-5729 10.1016/j.surfrep.2005.08.004
-
see also, J. W. Evans, P. A. Thiel, and M. C. Bartelt, Surf. Sci. Rep. SSREDI 0167-5729 10.1016/j.surfrep.2005.08.004 61, 1 (2006);
-
(2006)
Surf. Sci. Rep.
, vol.61
, pp. 1
-
-
Evans, J.W.1
Thiel, P.A.2
Bartelt, M.C.3
-
11
-
-
29144526039
-
-
PRLTAO 0031-9007 10.1103/PhysRevLett.95.256101
-
M. Li and J. W. Evans, Phys. Rev. Lett. PRLTAO 0031-9007 10.1103/PhysRevLett.95.256101 95, 256101 (2005);
-
(2005)
Phys. Rev. Lett.
, vol.95
, pp. 256101
-
-
Li, M.1
Evans, J.W.2
-
12
-
-
33344469010
-
-
PRLTAO 0031-9007 10.1103/PhysRevLett.96.e079902
-
M. Li and J. W. Evans, Phys. Rev. Lett. PRLTAO 0031-9007 10.1103/PhysRevLett.96.e079902 96, 079902 E (2006);
-
(2006)
Phys. Rev. Lett.
, vol.96
, pp. 079902
-
-
Li, M.1
Evans, J.W.2
-
13
-
-
33645455418
-
-
PRBMDO 0163-1829 10.1103/PhysRevB.73.125434
-
M. Li and J. W. Evans, Phys. Rev. B PRBMDO 0163-1829 10.1103/PhysRevB.73. 125434 73, 125434 (2006).
-
(2006)
Phys. Rev. B
, vol.73
, pp. 125434
-
-
Li, M.1
Evans, J.W.2
-
14
-
-
37649032549
-
-
PRBMDO 0163-1829 10.1103/PhysRevB.69.241402
-
A. Levandovsky and L. Golubovic, Phys. Rev. B PRBMDO 0163-1829 10.1103/PhysRevB.69.241402 69, 241402 (R) (2004).
-
(2004)
Phys. Rev. B
, vol.69
, pp. 241402
-
-
Levandovsky, A.1
Golubovic, L.2
-
15
-
-
0001776828
-
-
JPGCE8 1155-4304 10.1051/jp1:1991114
-
J. Villain, J. Phys. I JPGCE8 1155-4304 10.1051/jp1:1991114 1, 19 (1991).
-
(1991)
J. Phys. i
, vol.1
, pp. 19
-
-
Villain, J.1
-
16
-
-
0034206470
-
-
PLEEE8 1063-651X 10.1103/PhysRevE.61.6190
-
D. Moldovan and L. Golubovic, Phys. Rev. E PLEEE8 1063-651X 10.1103/PhysRevE.61.6190 61, 6190 (2000).
-
(2000)
Phys. Rev. e
, vol.61
, pp. 6190
-
-
Moldovan, D.1
Golubovic, L.2
-
17
-
-
0001241390
-
-
PRLTAO 0031-9007 10.1103/PhysRevLett.81.5481
-
M. Siegert, Phys. Rev. Lett. PRLTAO 0031-9007 10.1103/PhysRevLett.81.5481 81, 5481 (1998).
-
(1998)
Phys. Rev. Lett.
, vol.81
, pp. 5481
-
-
Siegert, M.1
-
18
-
-
0037092738
-
-
PRBMDO 0163-1829 10.1103/PhysRevB.65.193407
-
K. J. Caspersen, A. R. Layson, C. R. Stoldt, V. Fournee, P. A. Thiel, and J. W. Evans, Phys. Rev. B PRBMDO 0163-1829 10.1103/PhysRevB.65.193407 65, 193407 (2002). Side-by-side arranged four sided mounds were observed in these microscopic kinetic simulations of the Ag(100) surface. For the present less symmetric (110) surface, such side-by-side arranged pyramids, observed in our Fig. 5, are only approximately square shaped and packed as arrays between long straight pits, yielding the near in-phase diffraction pattern seen in Fig. 6 which is like that of a rippled state.
-
(2002)
Phys. Rev. B
, vol.65
, pp. 193407
-
-
Caspersen, K.J.1
Layson, A.R.2
Stoldt, C.R.3
Fournee, V.4
Thiel, P.A.5
Evans, J.W.6
-
19
-
-
0001591237
-
-
For example, on (100) surfaces, positive VA values favor rounder tops of four-sided pyramids and sharper four-sided pyramidal pits (relative to zero VA morphologies with no difference between tops and pits widths). Experiments on (100) surfaces indeed reveal these features (i. e., a positive VA) to be typically realized. See the micrographs of the checkerboard structure of alternating four-sided pyramids and pyramidal pits on Cu(100) surface, in PRLTAO 0031-9007 10.1103/PhysRevLett.95.256101
-
For example, on (100) surfaces, positive VA values favor rounder tops of four-sided pyramids and sharper four-sided pyramidal pits (relative to zero VA morphologies with no difference between tops and pits widths). Experiments on (100) surfaces indeed reveal these features (i. e., a positive VA) to be typically realized. See the micrographs of the checkerboard structure of alternating four-sided pyramids and pyramidal pits on Cu(100) surface, in J.-K. Zuo and J. F. Wendelken, Phys. Rev. Lett. PRLTAO 0031-9007 10.1103/PhysRevLett. 95.256101 78, 2791 (1997). We stress that a similar effect of a positive VA is seen in its effects on the facet edges widths: convex edges are narrower whereas concave edges are broader relative to their widths at zero VA. See, for example, Eqs. 2.33 2.34, which imply w+ < wâ for λ⠀ >0.
-
(1997)
Phys. Rev. Lett.
, vol.78
, pp. 2791
-
-
Zuo, J.-K.1
Wendelken, J.F.2
-
20
-
-
0003517281
-
-
See, for example, in Cambridge University Press, Cambridge
-
See, for example, in P. M. Chaikin and T. C. Lubensky, Principles of Condensed Matter Physics (Cambridge University Press, Cambridge, 1995), Chap..
-
(1995)
Principles of Condensed Matter Physics
-
-
Chaikin, P.M.1
Lubensky, T.C.2
|