메뉴 건너뛰기




Volumn , Issue , 2007, Pages 248-255

The condition number of a randomly perturbed matrix

Author keywords

Singular values

Indexed keywords

NUMBER THEORY; PERTURBATION TECHNIQUES; POLYNOMIALS; PROBABILITY;

EID: 35448941880     PISSN: 07378017     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1145/1250790.1250828     Document Type: Conference Paper
Times cited : (49)

References (12)
  • 1
    • 0003424374 scopus 로고    scopus 로고
    • Society for Industrial and Applied Mathematics SIAM, Philadelphia, PA
    • D. Bau and L. Trefethen, Numerical linear algebra. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1997.
    • (1997) Numerical linear algebra
    • Bau, D.1    Trefethen, L.2
  • 2
    • 1642373920 scopus 로고    scopus 로고
    • Random graphs
    • Second edition, Cambridge University Press, Cambridge
    • B. Bollobás, Random graphs. Second edition, Cambridge Studies in Advanced Mathematics, 73. Cambridge University Press, Cambridge, 2001.
    • (2001) Cambridge Studies in Advanced Mathematics , vol.73
    • Bollobás, B.1
  • 3
    • 0000324960 scopus 로고
    • Eigenvalues and condition numbers of random matrices
    • A. Edelman, Eigenvalues and condition numbers of random matrices. SIAM J. Matrix Anal. Appl. 9 (1988), no. 4, 543-560.
    • (1988) SIAM J. Matrix Anal. Appl , vol.9 , Issue.4 , pp. 543-560
    • Edelman, A.1
  • 4
    • 33646242497 scopus 로고    scopus 로고
    • Tails of condition number distributions
    • A. Edelman and B. Sutton, Tails of condition number distributions, SIAM J. Matrix Anal. Appl. 27 (2005), no. 2, 547-560.
    • (2005) SIAM J. Matrix Anal. Appl , vol.27 , Issue.2 , pp. 547-560
    • Edelman, A.1    Sutton, B.2
  • 5
    • 84968494236 scopus 로고
    • On the probability that a random ±1 matrix is singular
    • J. Kahn, J. Komlós, E. Szemerédi, On the probability that a random ±1 matrix is singular, J. Amer. Math. Soc. 8 (1995), 223-240.
    • (1995) J. Amer. Math. Soc , vol.8 , pp. 223-240
    • Kahn, J.1    Komlós, J.2    Szemerédi, E.3
  • 6
    • 18644382839 scopus 로고    scopus 로고
    • Smallest singular value of random matrices and geometry of random polytopes
    • A. Litvak, A. Pajor, M. Rudelson and N. Tomczak-Jaegermann, Smallest singular value of random matrices and geometry of random polytopes, Adv. Math. 195 (2005), no. 2, 491-523.
    • (2005) Adv. Math , vol.195 , Issue.2 , pp. 491-523
    • Litvak, A.1    Pajor, A.2    Rudelson, M.3    Tomczak-Jaegermann, N.4
  • 7
    • 31344438984 scopus 로고    scopus 로고
    • Invertibility of random matrices: Norm of the inverse
    • submitted
    • M. Rudelson, Invertibility of random matrices: Norm of the inverse, submitted.
    • Rudelson, M.1
  • 8
    • 35448958033 scopus 로고    scopus 로고
    • Smoothed Analysis of the Condition Numbers and Growth Factors of Matrices
    • preprint
    • A. Sankar, S. H. Teng, and D. A. Spielman, Smoothed Analysis of the Condition Numbers and Growth Factors of Matrices, preprint.
    • Sankar, A.1    Teng, S.H.2    Spielman, D.A.3
  • 10
    • 4243066295 scopus 로고    scopus 로고
    • Smoothed analysis of algorithms: Why the simplex algorithm usually takes polynomial time
    • D. A. Spielman and S. H. Teng, Smoothed analysis of algorithms: why the simplex algorithm usually takes polynomial time, J. ACM 51 (2004), no. 3, 385-463.
    • (2004) J. ACM , vol.51 , Issue.3 , pp. 385-463
    • Spielman, D.A.1    Teng, S.H.2
  • 11
    • 33645288547 scopus 로고    scopus 로고
    • On random ±1 matrices: Singularity and Determinant
    • T. Tao and V. Vu, On random ±1 matrices: Singularity and Determinant, Random Structures Algorithms 28 (2006), no. 1, 1-23.
    • (2006) Random Structures Algorithms , vol.28 , Issue.1 , pp. 1-23
    • Tao, T.1    Vu, V.2
  • 12
    • 35448946399 scopus 로고    scopus 로고
    • Inverse Littlewood-Offord theorems and the condition number of random discrete matrices
    • T. Tao and V. Vu, Inverse Littlewood-Offord theorems and the condition number of random discrete matrices, Annals of Mathematics, to appear.
    • Annals of Mathematics, to appear
    • Tao, T.1    Vu, V.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.