메뉴 건너뛰기




Volumn 52, Issue 8, 2004, Pages 2200-2209

Stochastic correlative learning algorithms

Author keywords

[No Author keywords available]

Indexed keywords

COMPUTATIONAL COMPLEXITY; COMPUTER SIMULATION; CORRELATION METHODS; DATA REDUCTION; FEATURE EXTRACTION; IDENTIFICATION (CONTROL SYSTEMS); LEARNING ALGORITHMS; MONTE CARLO METHODS; NEUROLOGY; RANDOM PROCESSES; ROBOTIC ARMS; STEREO VISION;

EID: 3543138291     PISSN: 1053587X     EISSN: None     Source Type: Journal    
DOI: 10.1109/TSP.2004.831067     Document Type: Article
Times cited : (16)

References (52)
  • 1
    • 0014335921 scopus 로고
    • A memory storage model utilizing spatial correlation functions
    • J. A. Anderson, "A memory storage model utilizing spatial correlation functions," Kybernetik, vol. 5, no. 3, pp. 113-119, 1969.
    • (1969) Kybernetik , vol.5 , Issue.3 , pp. 113-119
    • Anderson, J.A.1
  • 2
    • 0011283878 scopus 로고
    • A simple neural network generating an interactive memory
    • J. A. Anderson, "A simple neural network generating an interactive memory," Math. Biosci., vol. 14, pp. 197-220, 1972.
    • (1972) Math. Biosci. , vol.14 , pp. 197-220
    • Anderson, J.A.1
  • 3
    • 0036591379 scopus 로고    scopus 로고
    • Auditory stimulus optimization with feedback from fuzzy clustering of neuronal responses
    • June
    • M. J. Anderson and E. Tzanakou, "Auditory stimulus optimization with feedback from fuzzy clustering of neuronal responses," IEEE Trans. Inform. Technol. Biomed., vol. 6, pp. 159-169, June 2002.
    • (2002) IEEE Trans. Inform. Technol. Biomed. , vol.6 , pp. 159-169
    • Anderson, M.J.1    Tzanakou, E.2
  • 4
    • 34548281969 scopus 로고
    • Can information theory provide an ecological theory of sensory processing?
    • J. J. Atick, "Can information theory provide an ecological theory of sensory processing?," Network, vol. 3, pp. 213-251, 1992.
    • (1992) Network , vol.3 , pp. 213-251
    • Atick, J.J.1
  • 5
    • 0029411030 scopus 로고
    • An information-maximization approach to blind separation blind deconvolution
    • A. J. Bell and T. J. Sejnowski, "An information-maximization approach to blind separation and blind deconvolution," Neural Comput., vol. 7, pp. 1129-1159, 1995.
    • (1995) Neural Comput. , vol.7 , pp. 1129-1159
    • Bell, A.J.1    Sejnowski, T.J.2
  • 6
    • 2342649032 scopus 로고    scopus 로고
    • Alopex-B: A new simple but yet faster version of the Alopex training algorithm
    • A. Bia, "Alopex-B: a new, simple, but yet faster version of the Alopex training algorithm," Int. J. Neural Syst., vol. 11, no. 6, pp. 497-507, 2001.
    • (2001) Int. J. Neural Syst. , vol.11 , Issue.6 , pp. 497-507
    • Bia, A.1
  • 7
    • 85015692260 scopus 로고
    • The pricing of options corporate liabilities
    • F. Black and M. Scholes, "The pricing of options and corporate liabilities," J. Political Econ., vol. 81, pp. 637-659, 1973.
    • (1973) J. Political Econ. , vol.81 , pp. 637-659
    • Black, F.1    Scholes, M.2
  • 8
    • 0002828852 scopus 로고    scopus 로고
    • Receptive field formation in natural scene environments: Comparison of single cell learning rules
    • B. S. Blais, N. Intrator, H. Shouval, and L. N. Cooper, "Receptive field formation in natural scene environments: comparison of single cell learning rules," Neural Comput., vol. 10, pp. 1797-1813, 1998.
    • (1998) Neural Comput. , vol.10 , pp. 1797-1813
    • Blais, B.S.1    Intrator, N.2    Shouval, H.3    Cooper, L.N.4
  • 9
    • 3543070663 scopus 로고    scopus 로고
    • Fisher scoring a mixture of modes approach for approximate inference learning in nonlinear state space models
    • Cambridge MA: MIT Press
    • T. Briegel and V. Tresp, "Fisher scoring and a mixture of modes approach for approximate inference and learning in nonlinear state space models," in Advances in Neural Information Processing Systems. Cambridge, MA: MIT Press, 1999, vol. 11.
    • (1999) Advances in Neural Information Processing Systems , vol.11
    • Briegel, T.1    Tresp, V.2
  • 12
    • 4544236432 scopus 로고    scopus 로고
    • Theory of Monte Carlo sampling-based Alopex algorithms for neural networks
    • Montreal QC Canada
    • Z. Chen, S. Haykin, and S. Becker, "Theory of Monte Carlo sampling-based Alopex algorithms for neural networks," in Proc. ICASSP, Montreal, QC, Canada, 2004.
    • (2004) Proc. ICASSP
    • Chen, Z.1    Haykin, S.2    Becker, S.3
  • 14
    • 0000979403 scopus 로고    scopus 로고
    • Sequential Monte Carlo methods to train neural network models
    • J. F. G. de Freitas, M. Niranjan, A. H. Gee, and A. Doucet, "Sequential Monte Carlo methods to train neural network models," Neural Comput., vol. 12, no. 4, pp. 955-993, 2000.
    • (2000) Neural Comput. , vol.12 , Issue.4 , pp. 955-993
    • de Freitas, J.F.G.1    Niranjan, M.2    Gee, A.H.3    Doucet, A.4
  • 17
    • 0000929221 scopus 로고
    • What is the goal of sensory coding?
    • D. J. Field, "What is the goal of sensory coding?," Neural Comput., vol. 6, pp. 559-601, 1994.
    • (1994) Neural Comput. , vol.6 , pp. 559-601
    • Field, D.J.1
  • 18
    • 0027629572 scopus 로고
    • Trial-and-error correlation learning
    • July
    • O. Fujita, "Trial-and-error correlation learning," IEEE Trans. Neural Networks, vol. 4, pp. 720-722, July 1993.
    • (1993) IEEE Trans. Neural Networks , vol.4 , pp. 720-722
    • Fujita, O.1
  • 19
    • 0021518209 scopus 로고
    • Stochastic relaxation Gibbs distributions the Bayesian restoration of images
    • S. Geman and D. Geman, "Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images," IEEE Trans. Pattern Anal. Machine Intell., vol. 6, pp. 721-741, 1984.
    • (1984) IEEE Trans. Pattern Anal. Machine Intell. , vol.6 , pp. 721-741
    • Geman, S.1    Geman, D.2
  • 20
    • 0034440841 scopus 로고    scopus 로고
    • Neural networks trained with simulation data for outcome prediction in pallidotomy for Parkinson's disease
    • J. L. Hamilton, E. Tzanakou, and R. M. Lehman, "Neural networks trained with simulation data for outcome prediction in pallidotomy for Parkinson's disease," in Proc. 22nd IEEE Engr. Med. Biol., vol. 1, 2000, pp. 1-4.
    • (2000) Proc. 22nd IEEE Engr. Med. Biol. , vol.1 , pp. 1-4
    • Hamilton, J.L.1    Tzanakou, E.2    Lehman, R.M.3
  • 21
    • 0016303884 scopus 로고
    • Alopex: A stochastic method for determining visual receptive fields
    • E. Harth and E. Tzanakou, "Alopex: a stochastic method for determining visual receptive fields," Vis. Res., vol. 14, pp. 1475-1482, 1974.
    • (1974) Vis. Res. , vol.14 , pp. 1475-1482
    • Harth, E.1    Tzanakou, E.2
  • 22
    • 0023195718 scopus 로고
    • The inversion of sensory processing by feedback pathways: A model of visual cognitive functions
    • E. Harth, K. P. Unnikrishnan, and A. S. Pandya, "The inversion of sensory processing by feedback pathways: a model of visual cognitive functions," Science, vol. 237, pp. 184-187, 1987.
    • (1987) Science , vol.237 , pp. 184-187
    • Harth, E.1    Unnikrishnan, K.P.2    Pandya, A.S.3
  • 26
    • 0020118274 scopus 로고
    • Neural networks physical systems with emergent collective computational abilities
    • J. J. Hopfield, "Neural networks and physical systems with emergent collective computational abilities," in Proc. Nat. Acad. Sci. USA, vol. 79, 1982, pp. 2554-2558.
    • (1982) Proc. Nat. Acad. Sci. USA , vol.79 , pp. 2554-2558
    • Hopfield, J.J.1
  • 28
    • 84993911657 scopus 로고
    • A nonparametric approach to pricing hedging derivative securities via learning networks
    • J. M. Hutchinson, A. W. Lo, and T. Poggio, "A nonparametric approach to pricing and hedging derivative securities via learning networks," J. Finance, vol. 49, no. 3, pp. 851-889, 1994.
    • (1994) J. Finance , vol.49 , Issue.3 , pp. 851-889
    • Hutchinson, J.M.1    Lo, A.W.2    Poggio, T.3
  • 32
    • 26444479778 scopus 로고
    • Optimization by simulated annealing
    • S. Kirkpatrick, C. G. Gelatt, and M. P. Vecchi, "Optimization by simulated annealing," Science, vol. 220, pp. 671-680, 1983.
    • (1983) Science , vol.220 , pp. 671-680
    • Kirkpatrick, S.1    Gelatt, C.G.2    Vecchi, M.P.3
  • 33
    • 0015331348 scopus 로고
    • Correlation matrix memories
    • T. Kohonen, "Correlation matrix memories," IEEE Trans. Comput., vol. C-21, pp. 353-359, 1972.
    • (1972) IEEE Trans. Comput. , vol.C-21 , pp. 353-359
    • Kohonen, T.1
  • 35
    • 0036127245 scopus 로고    scopus 로고
    • Adaptive multilayer perceptrons with long-and short-term memories
    • Jan
    • J. T. Lo and D. Bassu, "Adaptive multilayer perceptrons with long-and short-term memories," IEEE Trans. Neural Networks, vol. 13, pp. 22-33, Jan. 2001.
    • (2001) IEEE Trans. Neural Networks , vol.13 , pp. 22-33
    • Lo, J.T.1    Bassu, D.2
  • 36
    • 0001341735 scopus 로고    scopus 로고
    • Introduction to Monte Carlo methods
    • M.I. Jordan Ed. Cambridge MA: MIT Press
    • D. J. C. MacKay, "Introduction to Monte Carlo methods," in Learning in Graphical Models, M. I. Jordan, Ed. Cambridge, MA: MIT Press, 1999.
    • (1999) Learning in Graphical Models
    • MacKay, D.J.C.1
  • 37
    • 0017119752 scopus 로고
    • Cooperative computation of stereo disparity
    • D. Marr and T. Poggio, "Cooperative computation of stereo disparity," Science, vol. 194, pp. 283-287, 1976.
    • (1976) Science , vol.194 , pp. 283-287
    • Marr, D.1    Poggio, T.2
  • 39
    • 84941516894 scopus 로고
    • Associatron - a model of associative memory
    • K. Nakano, "Associatron - a model of associative memory," IEEE Trans. Syst., Man, Cybern., vol. SMC-2, no. 3, pp. 380-388, 1972.
    • (1972) IEEE Trans. Syst. Man Cybern. , vol.SMC-2 , Issue.3 , pp. 380-388
    • Nakano, K.1
  • 40
    • 0020464111 scopus 로고
    • A simplified neuron model as a principal component analyzer
    • E. Oja, "A simplified neuron model as a principal component analyzer," J. Math. Biol., vol. 15, pp. 267-273, 1982.
    • (1982) J. Math. Biol. , vol.15 , pp. 267-273
    • Oja, E.1
  • 41
    • 0002399288 scopus 로고
    • Neural networks principal components subspaces
    • E. Oja, "Neural networks, principal components, and subspaces," Int. J. Neural Syst., vol. 1, pp. 61-68, 1989.
    • (1989) Int. J. Neural Syst. , vol.1 , pp. 61-68
    • Oja, E.1
  • 42
    • 0024883243 scopus 로고
    • Optimal unsupervised learning in a single-layer linear feedforward neural network
    • T. D. Sanger, "Optimal unsupervised learning in a single-layer linear feedforward neural network," Neural Networks, vol. 2, no. 6, pp. 459-473, 1989.
    • (1989) Neural Networks , vol.2 , Issue.6 , pp. 459-473
    • Sanger, T.D.1
  • 43
    • 0040673435 scopus 로고    scopus 로고
    • Two timescale analysis of Alopex algorithm for optimization
    • P. S. Sastry, M. Magesh, and K. P. Unnikrishnan, "Two timescale analysis of Alopex algorithm for optimization," Neural Comput., vol. 14, no. 11, pp. 2729-2750, 2002.
    • (2002) Neural Comput. , vol.14 , Issue.11 , pp. 2729-2750
    • Sastry, P.S.1    Magesh, M.2    Unnikrishnan, K.P.3
  • 44
    • 0033221341 scopus 로고    scopus 로고
    • New algorithms for learning pruning oblique decision trees
    • Nov
    • S. Shah and P. S. Sastry, "New algorithms for learning and pruning oblique decision trees," IEEE Trans. Syst., Man, Cybern. C, vol. 29, pp. 494-505, Nov. 1999.
    • (1999) IEEE Trans. Syst. Man Cybern. C , vol.29 , pp. 494-505
    • Shah, S.1    Sastry, P.S.2
  • 45
    • 0018583507 scopus 로고
    • The Alopex process: Visual receptive fields by response feedback
    • E. Tzanakou, R. Michalak, and E. Harth, "The Alopex process: visual receptive fields by response feedback," Biol. Cybern., vol. 35, pp. 161-174, 1979.
    • (1979) Biol. Cybern. , vol.35 , pp. 161-174
    • Tzanakou, E.1    Michalak, R.2    Harth, E.3
  • 46
    • 3543136115 scopus 로고    scopus 로고
    • Neural networks in signal image processing
    • E. Tzanakou, "Neural networks in signal and image processing," in Proc. IEEE ELECTRO, 1996, pp. 337-346.
    • (1996) Proc. IEEE ELECTRO , pp. 337-346
    • Tzanakou, E.1
  • 48
    • 0001682375 scopus 로고
    • Alopex: A correlation-based learning algorithm for feedforward recurrent neural networks
    • K. P. Unnikrishnan and K. P. Venugopal, "Alopex: a correlation-based learning algorithm for feedforward and recurrent neural networks," Neural Comput., vol. 6, pp. 469-490, 1994.
    • (1994) Neural Comput. , vol.6 , pp. 469-490
    • Unnikrishnan, K.P.1    Venugopal, K.P.2
  • 50
    • 0028016631 scopus 로고
    • A recurrent network controller learning algorithm for the on-line learning control of autonomous underwater vehicles
    • K. P. Venugopal, A. S. Pandya, and R. Sundhakar, "A recurrent network controller and learning algorithm for the on-line learning control of autonomous underwater vehicles," Neural Networks, vol. 7, no. 5, pp. 833-846, 1994.
    • (1994) Neural Networks , vol.7 , Issue.5 , pp. 833-846
    • Venugopal, K.P.1    Pandya, A.S.2    Sundhakar, R.3
  • 52
    • 0031447220 scopus 로고    scopus 로고
    • Dynamic importance weighting in Monte Carlo optimization
    • W. H. Wong and F. Liang, "Dynamic importance weighting in Monte Carlo and optimization," in Proc. Nat. Acad. Sci. USA, vol. 94, 1997, pp. 14 220-14 224.
    • (1997) Proc. Nat. Acad. Sci. USA , vol.94
    • Wong, W.H.1    Liang, F.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.