-
1
-
-
0000521350
-
Wavelet decomposition approaches to statistical inverse problems
-
Abramovich, F. and Silverman, B. (1998) Wavelet decomposition approaches to statistical inverse problems. Biometrika, 85, 115-129.
-
(1998)
Biometrika
, vol.85
, pp. 115-129
-
-
Abramovich, F.1
Silverman, B.2
-
3
-
-
0004172067
-
-
Stanford University, Stanford
-
Buckheit, J., Chen, S., Donoho, D. and Johnstone, I. (1995) Wavelab reference manual. Stanford University, Stanford. (Available from http://www-stat.stanford.edu/wavelab/.)
-
(1995)
Wavelab Reference Manual
-
-
Buckheit, J.1
Chen, S.2
Donoho, D.3
Johnstone, I.4
-
4
-
-
0002001578
-
Translation-invariant de-noising
-
Coifman, R. and Donoho, D. (1995) Translation-invariant de-noising. Lect. Notes Statist., 103, 125-150.
-
(1995)
Lect. Notes Statist.
, vol.103
, pp. 125-150
-
-
Coifman, R.1
Donoho, D.2
-
5
-
-
0029288068
-
Nonlinear solution of linear inverse problems by wavelet-vaguelette decomposition
-
Donoho, D. (1995) Nonlinear solution of linear inverse problems by wavelet-vaguelette decomposition. Appl. Comput. Harm. Anal., 2, 101-126.
-
(1995)
Appl. Comput. Harm. Anal.
, vol.2
, pp. 101-126
-
-
Donoho, D.1
-
6
-
-
0000742672
-
Wavelet shrinkage: Asymptopia?
-
Donoho, D. L., Johnstone, I. M., Kerkyacharian, G. and Picard, D. (1995) Wavelet shrinkage: asymptopia (with discussion)? J. R. Statist. Soc. B, 57, 301-369.
-
(1995)
J. R. Statist. Soc. B
, vol.57
, pp. 301-369
-
-
Donoho, D.L.1
Johnstone, I.M.2
Kerkyacharian, G.3
Picard, D.4
-
8
-
-
0442293816
-
Quasi-linear wavelet estimation
-
Efromovich, S. (1999) Quasi-linear wavelet estimation. J. Am. Statist. Ass., 94, 189-204.
-
(1999)
J. Am. Statist. Ass.
, vol.94
, pp. 189-204
-
-
Efromovich, S.1
-
10
-
-
0000361611
-
Some maximal inequalities
-
Fefferman, C. and Stein, E. (1971) Some maximal inequalities. Am. J. Math., 93, 107-115.
-
(1971)
Am. J. Math.
, vol.93
, pp. 107-115
-
-
Fefferman, C.1
Stein, E.2
-
11
-
-
42149186172
-
-
Oldenburg University, Oldenburg
-
Harsdorf, S. and Reuter, R. (2000) Stable deconvolution of noisy lidar signals. Oldenburg University, Oldenburg. (Available from http://las.physik.uni- oldenburg.de/projekte/earsel/4th_workshop.paper/harsdorf.pdf.)
-
(2000)
Stable Deconvolution of Noisy Lidar Signals
-
-
Harsdorf, S.1
Reuter, R.2
-
14
-
-
0001497545
-
Deconvolution of long-pulse lidar signals with matrix formulation
-
Je Park, Y., Whoe Dho, S. and Jin Kong, H. (1997) Deconvolution of long-pulse lidar signals with matrix formulation. Appl. Opt., 36, 5158-5161.
-
(1997)
Appl. Opt.
, vol.36
, pp. 5158-5161
-
-
Je Park, Y.1
Whoe Dho, S.2
Jin Kong, H.3
-
15
-
-
3542990761
-
Periodic boxcar deconvolution and diophantine approximation
-
in the press
-
Johnstone, I. M. and Raimondo, M. (2004) Periodic boxcar deconvolution and diophantine approximation. Ann. Statist., 32, no. 5, in the press.
-
(2004)
Ann. Statist.
, vol.32
, Issue.5
-
-
Johnstone, I.M.1
Raimondo, M.2
-
16
-
-
21144431817
-
Thresholding estimators for linear inverse problems and deconvolutions
-
Kalifa, J. and Mallat, S. (2003) Thresholding estimators for linear inverse problems and deconvolutions. Ann. Statist., 31, 58-109.
-
(2003)
Ann. Statist.
, vol.31
, pp. 58-109
-
-
Kalifa, J.1
Mallat, S.2
-
17
-
-
0346638494
-
Thresholding algorithms and well-concentrated bases
-
Kerkyacharian, G. and Picard, D. (2000) Thresholding algorithms and well-concentrated bases. Test, 9, 283-344.
-
(2000)
Test
, vol.9
, pp. 283-344
-
-
Kerkyacharian, G.1
Picard, D.2
-
21
-
-
0035124939
-
Wavelet methods for inverting the radon transform with noisy data
-
Lee, N.-Y. and Lucier, B. J. (2001) Wavelet methods for inverting the radon transform with noisy data. IEEE Trans. Image Process., 10, 79-94.
-
(2001)
IEEE Trans. Image Process.
, vol.10
, pp. 79-94
-
-
Lee, N.-Y.1
Lucier, B.J.2
-
23
-
-
0004198869
-
-
Cambridge: Cambridge University Press
-
Meyer, Y. (1992) Wavelets and Operators, vol. 1. Cambridge: Cambridge University Press.
-
(1992)
Wavelets and Operators
, vol.1
-
-
Meyer, Y.1
-
25
-
-
0742286341
-
Forward: Fourier-wavelet regularized deconvolution for ill-conditioned systems
-
Neelamani, R., Choi, H. and Baraniuk, R. (2004) Forward: Fourier-wavelet regularized deconvolution for ill-conditioned systems. IEEE Trans. Signal Process., 52, 418-433.
-
(2004)
IEEE Trans. Signal Process.
, vol.52
, pp. 418-433
-
-
Neelamani, R.1
Choi, H.2
Baraniuk, R.3
-
26
-
-
0033234633
-
Adaptive wavelet estimator for nonparametric density deconvolution
-
Pensky, M. and Vidakovic, B. (1999) Adaptive wavelet estimator for nonparametric density deconvolution. Ann. Statist., 27, 2033-2053.
-
(1999)
Ann. Statist.
, vol.27
, pp. 2033-2053
-
-
Pensky, M.1
Vidakovic, B.2
-
29
-
-
0009297513
-
Deconvolution using the Meyer wavelet
-
Walter, G. and Shen, X. (1999) Deconvolution using the Meyer wavelet. J. Integr. Eqns Appl., 11, 515-534.
-
(1999)
J. Integr. Eqns Appl.
, vol.11
, pp. 515-534
-
-
Walter, G.1
Shen, X.2
|