-
1
-
-
0038371018
-
-
0021-9606 10.1063/1.465066
-
U. Banin and S. Ruhman, J. Chem. Phys. 0021-9606 10.1063/1.465066 98, 4391 (1993).
-
(1993)
J. Chem. Phys.
, vol.98
, pp. 4391
-
-
Banin, U.1
Ruhman, S.2
-
3
-
-
33749102571
-
-
0022-3654 10.1021/jp953325o
-
E. Lenderink, K. Duppen, F. P. X. Everdij, J. Marvi, R. Torre, and D. A. Wiersma, J. Phys. Chem. 0022-3654 10.1021/jp953325o 100, 7822 (1996).
-
(1996)
J. Phys. Chem.
, vol.100
, pp. 7822
-
-
Lenderink, E.1
Duppen, K.2
Everdij, F.P.X.3
Marvi, J.4
Torre, R.5
Wiersma, D.A.6
-
4
-
-
0030604630
-
-
0009-2614 10.1016/0009-2614(96)00443-5
-
C. Wan, M. Gupta, and A. Zewail, Chem. Phys. Lett. 0009-2614 10.1016/0009-2614(96)00443-5 256, 279 (1996).
-
(1996)
Chem. Phys. Lett.
, vol.256
, pp. 279
-
-
Wan, C.1
Gupta, M.2
Zewail, A.3
-
5
-
-
0030284757
-
-
0953-8984 10.1088/0953-8984/8/47/009
-
S. Gnanakaran, M. Lim, N. Pugliano, M. Volk, and R. M. Hochstrasser, J. Phys.: Condens. Matter 0953-8984 10.1088/0953-8984/8/47/009 8, 9201 (1996).
-
(1996)
J. Phys.: Condens. Matter
, vol.8
, pp. 9201
-
-
Gnanakaran, S.1
Lim, M.2
Pugliano, N.3
Volk, M.4
Hochstrasser, R.M.5
-
6
-
-
0030780625
-
-
1089-5639 10.1021/jp962013y
-
M. Volk, S. Gnanakaran, E. Gooding, Y. Kholodenko, N. Pugliano, and R. M. Hochstrasser, J. Phys. Chem. A 1089-5639 10.1021/jp962013y 101, 638 (1997).
-
(1997)
J. Phys. Chem. A
, vol.101
, pp. 638
-
-
Volk, M.1
Gnanakaran, S.2
Gooding, E.3
Kholodenko, Y.4
Pugliano, N.5
Hochstrasser, R.M.6
-
10
-
-
0009743597
-
-
1089-5639 10.1021/jp990379f
-
M. Volk, J. Phys. Chem. A 1089-5639 10.1021/jp990379f 103, 5621 (1999).
-
(1999)
J. Phys. Chem. A
, vol.103
, pp. 5621
-
-
Volk, M.1
-
11
-
-
0009732006
-
-
1089-5639
-
S. Hess, H. Hippler, T. Kühne, and P. Vöhringer, J. Phys. Chem. A 103, 5622 (1999). 1089-5639
-
(1999)
J. Phys. Chem. A
, vol.103
, pp. 5622
-
-
Hess, S.1
Hippler, H.2
Kühne, T.3
Vöhringer, P.4
-
12
-
-
0042231184
-
-
H. Bürsing, J. Lindner, S. Hess, and P. Vöhringer, Appl. Phys. B: Lasers Opt. 71, 411 (2000).
-
(2000)
Appl. Phys. B: Lasers Opt.
, vol.71
, pp. 411
-
-
Bürsing, H.1
Lindner, J.2
Hess, S.3
Vöhringer, P.4
-
14
-
-
0035870562
-
-
0021-9606 10.1063/1.1357202
-
H. Fidder, F. Tschirschwitz, O. Duhr, and E. T. J. Nibbering, J. Chem. Phys. 0021-9606 10.1063/1.1357202 114, 6781 (2001).
-
(2001)
J. Chem. Phys.
, vol.114
, pp. 6781
-
-
Fidder, H.1
Tschirschwitz, F.2
Duhr, O.3
Nibbering, E.T.J.4
-
18
-
-
36449006644
-
-
0021-9606 10.1063/1.470695
-
I. Benjamin, J. Chem. Phys. 0021-9606 10.1063/1.470695 103, 2459 (1995).
-
(1995)
J. Chem. Phys.
, vol.103
, pp. 2459
-
-
Benjamin, I.1
-
19
-
-
0042206844
-
-
0021-9606 10.1063/1.1585019
-
N. Winter, I. Chorny, J. Vieceli, and I. Benjamin, J. Chem. Phys. 0021-9606 10.1063/1.1585019 119, 2127 (2003).
-
(2003)
J. Chem. Phys.
, vol.119
, pp. 2127
-
-
Winter, N.1
Chorny, I.2
Vieceli, J.3
Benjamin, I.4
-
20
-
-
36449004914
-
-
0021-9606 10.1063/1.466306
-
A. I. Krylov and B. B. Gerber, J. Chem. Phys. 0021-9606 10.1063/1.466306 100, 4242 (1994).
-
(1994)
J. Chem. Phys.
, vol.100
, pp. 4242
-
-
Krylov, A.I.1
Gerber, B.B.2
-
21
-
-
0004070551
-
-
Wiley, New York
-
W. Coffey, M. Evans, and P. Grigolini, Molecular Diffusion and Spectra (Wiley, New York, 1984), Chaps..
-
(1984)
Molecular Diffusion and Spectra
-
-
Coffey, W.1
Evans, M.2
Grigolini, P.3
-
22
-
-
0034139934
-
-
0301-0104 10.1016/S0301-0104(99)00360-2
-
A. P. Blokhin and M. F. Gelin, Chem. Phys. 0301-0104 10.1016/S0301- 0104(99)00360-2 252, 323 (2000).
-
(2000)
Chem. Phys.
, vol.252
, pp. 323
-
-
Blokhin, A.P.1
Gelin, M.F.2
-
23
-
-
0035442827
-
-
0167-7322 10.1016/S0167-7322(01)00206-9
-
M. F. Gelin, J. Mol. Liq. 0167-7322 10.1016/S0167-7322(01)00206-9 93, 51 (2001).
-
(2001)
J. Mol. Liq.
, vol.93
, pp. 51
-
-
Gelin, M.F.1
-
24
-
-
33645464115
-
-
0036-8075 10.1126/science.1123738
-
A. S. Moskun, A. E. Jailaubekov, S. E. Bradforth, G. Tao, and R. M. Stratt, Science 0036-8075 10.1126/science.1123738 311, 1907 (2006).
-
(2006)
Science
, vol.311
, pp. 1907
-
-
Moskun, A.S.1
Jailaubekov, A.E.2
Bradforth, S.E.3
Tao, G.4
Stratt, R.M.5
-
25
-
-
33749017062
-
-
0021-9606 10.1063/1.2336780
-
G. Tao and R. M. Stratt, J. Chem. Phys. 0021-9606 10.1063/1.2336780 125, 114501 (2006).
-
(2006)
J. Chem. Phys.
, vol.125
, pp. 114501
-
-
Tao, G.1
Stratt, R.M.2
-
26
-
-
33845539715
-
-
0021-9606 10.1063/1.2401609
-
M. F. Gelin and D. S. Kosov, J. Chem. Phys. 0021-9606 10.1063/1.2401609 125, 224502 (2006).
-
(2006)
J. Chem. Phys.
, vol.125
, pp. 224502
-
-
Gelin, M.F.1
Kosov, D.S.2
-
27
-
-
36849099056
-
-
0021-9606 10.1063/1.1726949
-
R. G. Gordon, J. Chem. Phys. 0021-9606 10.1063/1.1726949 44, 1830 (1966).
-
(1966)
J. Chem. Phys.
, vol.44
, pp. 1830
-
-
Gordon, R.G.1
-
28
-
-
0000445187
-
-
0021-9606 10.1063/1.1672362
-
M. Fixman and K. Rider, J. Chem. Phys. 0021-9606 10.1063/1.1672362 51, 2425 (1969).
-
(1969)
J. Chem. Phys.
, vol.51
, pp. 2425
-
-
Fixman, M.1
Rider, K.2
-
31
-
-
0000653079
-
-
0370-1301 10.1088/0370-1301/70/4/307
-
R. A. Sack, Proc. Phys. Soc. London, Sect. B 0370-1301 10.1088/0370-1301/70/4/307 70, 402 (1957); R. A. Sack, Proc. Phys. Soc. London, Sect. B 0370-1301 10.1088/0370-1301/70/4/308 70, 414 (1957).
-
(1957)
Proc. Phys. Soc. London, Sect. B
, vol.70
, pp. 402
-
-
Sack, R.A.1
-
32
-
-
0005830881
-
-
0370-1301 10.1088/0370-1301/70/4/308
-
R. A. Sack, Proc. Phys. Soc. London, Sect. B 0370-1301 10.1088/0370-1301/70/4/307 70, 402 (1957); R. A. Sack, Proc. Phys. Soc. London, Sect. B 0370-1301 10.1088/0370-1301/70/4/308 70, 414 (1957).
-
(1957)
Proc. Phys. Soc. London, Sect. B
, vol.70
, pp. 414
-
-
Sack, R.A.1
-
33
-
-
34547554904
-
-
0021-9606 10.1063/1.2191058
-
M. F. Gelin and D. S. Kosov, J. Chem. Phys. 0021-9606 10.1063/1.2191058 124, 144514 (2006).
-
(2006)
J. Chem. Phys.
, vol.124
, pp. 144514
-
-
Gelin, M.F.1
Kosov, D.S.2
-
34
-
-
0003179691
-
-
1050-2947 10.1103/PhysRevA.6.2421
-
P. S. Hubbard, Phys. Rev. A 1050-2947 10.1103/PhysRevA.6.2421 6, 2421 (1972).
-
(1972)
Phys. Rev. A
, vol.6
, pp. 2421
-
-
Hubbard, P.S.1
-
36
-
-
0039571647
-
-
0021-9606 10.1063/1.443365
-
A. Morita, J. Chem. Phys. 0021-9606 10.1063/1.443365 76, 3198 (1982).
-
(1982)
J. Chem. Phys.
, vol.76
, pp. 3198
-
-
Morita, A.1
-
37
-
-
0002496338
-
-
0301-0104 10.1016/0301-0104(87)85019-X
-
D. H. Lee and R. E. D. McClung, Chem. Phys. 0301-0104 10.1016/0301-0104(87)85019-X 112, 23 (1987).
-
(1987)
Chem. Phys.
, vol.112
, pp. 23
-
-
Lee, D.H.1
McClung, R.E.D.2
-
38
-
-
0000478694
-
-
0022-3654 10.1021/j100064a015
-
J. S. Baskin and A. Zewail, J. Phys. Chem. 0022-3654 10.1021/j100064a015 98, 3337 (1994).
-
(1994)
J. Phys. Chem.
, vol.98
, pp. 3337
-
-
Baskin, J.S.1
Zewail, A.2
-
40
-
-
0000231218
-
-
0021-9606 10.1063/1.448879
-
I. Nadler, D. Mahgerefteh, H. Reisler, and C. Wittig, J. Chem. Phys. 0021-9606 10.1063/1.448879 82, 3885 (1985).
-
(1985)
J. Chem. Phys.
, vol.82
, pp. 3885
-
-
Nadler, I.1
Mahgerefteh, D.2
Reisler, H.3
Wittig, C.4
-
44
-
-
35348917825
-
-
Angular momentum dependent relaxation rates can be calculated for collisions of rigid nonspherical bodies,44 45 46 but the so-obtained formulas are very cumbersome and the very use of the predictions of the gas-phase (uncorrelated binary collision) theories is questionable for our purposes.
-
Angular momentum dependent relaxation rates can be calculated for collisions of rigid nonspherical bodies, but the so-obtained formulas are very cumbersome and the very use of the predictions of the gas-phase (uncorrelated binary collision) theories is questionable for our purposes.
-
-
-
-
46
-
-
34547448662
-
-
0021-9606 10.1063/1.1678623
-
K. L. Rider and M. Fixman, J. Chem. Phys. 0021-9606 10.1063/1.1678623 57, 2548 (1972).
-
(1972)
J. Chem. Phys.
, vol.57
, pp. 2548
-
-
Rider, K.L.1
Fixman, M.2
-
47
-
-
0003400269
-
-
0065-2385
-
M. P. Allen, G. T. Evans, D. Frenkel, and B. M. Mulder, Adv. Chem. Phys. 83, 89 (1993). 0065-2385
-
(1993)
Adv. Chem. Phys.
, vol.83
, pp. 89
-
-
Allen, M.P.1
Evans, G.T.2
Frenkel, D.3
Mulder, B.M.4
-
48
-
-
35348858328
-
-
Gaussian expansions are commonly employed in quantum chemical calculations. We can also recall a similar factorized decomposition of the spectral density function in quantum relaxation theory.48
-
Gaussian expansions are commonly employed in quantum chemical calculations. We can also recall a similar factorized decomposition of the spectral density function in quantum relaxation theory.
-
-
-
-
49
-
-
0001222431
-
-
0021-9606 10.1063/1.479669
-
C. Meier and D. J. Tannor, J. Chem. Phys. 0021-9606 10.1063/1.479669 111, 3365 (1999).
-
(1999)
J. Chem. Phys.
, vol.111
, pp. 3365
-
-
Meier, C.1
Tannor, D.J.2
-
51
-
-
0000036983
-
-
0021-9606 10.1063/1.477918
-
A. P. Blokhin, M. F. Gelin, I. I. Kalosha, S. A. Polubisok, and V. A. Tolkachev, J. Chem. Phys. 0021-9606 10.1063/1.477918 110, 978 (1999).
-
(1999)
J. Chem. Phys.
, vol.110
, pp. 978
-
-
Blokhin, A.P.1
Gelin, M.F.2
Kalosha, I.I.3
Polubisok, S.A.4
Tolkachev, V.A.5
-
52
-
-
35348855251
-
-
In some cases, the effect of rotational predissociation on the anisotropy evolution can be taken into account as proposed in Ref. 50.
-
In some cases, the effect of rotational predissociation on the anisotropy evolution can be taken into account as proposed in Ref..
-
-
-
-
53
-
-
35348925120
-
-
Note that the present parameter differs from its counterpart from Ref. 49 by the factor of 2.
-
Note that the present parameter differs from its counterpart from Ref. by the factor of 2.
-
-
-
-
54
-
-
35348819629
-
-
See discussion in supplementary material to Ref. 24 for a validity of using the gas phase distribution for the interpretation of condensed phase data.
-
See discussion in supplementary material to Ref. for a validity of using the gas phase distribution for the interpretation of condensed phase data.
-
-
-
-
55
-
-
35348836243
-
-
Note that nonequilibrium CFs CS (t) and CJ (t) simulated in Ref. 24 are also very similar.
-
Note that nonequilibrium CFs CS (t) and CJ (t) simulated in Ref. are also very similar.
-
-
-
-
57
-
-
35348900992
-
-
Since the C-N interatomic length has been taken as 1.268 Å in Refs. 24 25, the free rotation period τr for CN at 120 K is 0.32 ps. If we recalculate the nonequilibrium temperature T- Δ =2875 into the dimensionless transferred angular momentum, we get then Δ=6.9. We used a slightly smaller value of Δ=6.75 in our generalized J -diffusion calculations presented in Fig., in order to better reproduce the oscillation period of the CFs.
-
Since the C-N interatomic length has been taken as 1.268 Å in Refs., the free rotation period τr for CN at 120 K is 0.32 ps. If we recalculate the nonequilibrium temperature T- Δ =2875 into the dimensionless transferred angular momentum, we get then Δ=6.9. We used a slightly smaller value of Δ=6.75 in our generalized J -diffusion calculations presented in Fig., in order to better reproduce the oscillation period of the CFs.
-
-
-
-
58
-
-
0000272266
-
-
0026-8976 10.1080/00268977700101031
-
J. G. Powles and G. Rickayzen, Mol. Phys. 0026-8976 10.1080/ 00268977700101031 33, 1207 (1977).
-
(1977)
Mol. Phys.
, vol.33
, pp. 1207
-
-
Powles, J.G.1
Rickayzen, G.2
-
59
-
-
35348881153
-
-
Note that aj0 = cj =0 for odd j. Thus, if →0, then also τj →0 for odd j.
-
Note that aj0 = cj =0 for odd j. Thus, if →0, then also τj →0 for odd j.
-
-
-
-
62
-
-
0011972018
-
-
1050-2947 10.1103/PhysRevA.42.3374
-
S. -B. Zhu, Phys. Rev. A 1050-2947 10.1103/PhysRevA.42.3374 42, 3374 (1990).
-
(1990)
Phys. Rev. A
, vol.42
, pp. 3374
-
-
Zhu, S.B.1
-
63
-
-
26844564295
-
-
0301-0104 10.1016/0301-0104(91)80046-K
-
S. -B. Zhu, S. Singh, J. Lee, and G. W. Robinson, Chem. Phys. 0301-0104 10.1016/0301-0104(91)80046-K 152, 221 (1991).
-
(1991)
Chem. Phys.
, vol.152
, pp. 221
-
-
Zhu, S.B.1
Singh, S.2
Lee, J.3
Robinson, G.W.4
-
64
-
-
34547451649
-
-
0021-9606 10.1063/1.2740257
-
M. F. Gelin and D. S. Kosov, J. Chem. Phys. 0021-9606 10.1063/1.2740257 126, 244501 (2007).
-
(2007)
J. Chem. Phys.
, vol.126
, pp. 244501
-
-
Gelin, M.F.1
Kosov, D.S.2
-
66
-
-
35348833749
-
-
The rotational Fokker-Planck equation with Gaussian friction gives very similar results, M. F. Gelin and D. S. Kosov (unpublished).
-
-
-
Gelin, M.F.1
Kosov, D.S.2
-
67
-
-
35348828783
-
-
Strictly speaking, CS (t) has uncertainty of the kind 0/0 if we put ne=B in Eq.. If, however, we consider the limit of CS (t) and τS when ne→B, then the quantities are well behaved.
-
Strictly speaking, CS (t) has uncertainty of the kind 0/0 if we put ne=B in Eq.. If, however, we consider the limit of CS (t) and τS when ne→B, then the quantities are well behaved.
-
-
-
-
68
-
-
5244274043
-
-
0031-899X 10.1103/PhysRev.184.172
-
A. G. St. Pierre and W. A. Steele, Phys. Rev. 0031-899X 10.1103/PhysRev.184.172 184, 172 (1969).
-
(1969)
Phys. Rev.
, vol.184
, pp. 172
-
-
St. Pierre, A.G.1
Steele, W.A.2
|