메뉴 건너뛰기




Volumn , Issue , 2007, Pages

A Bayesian non-Gaussian mixture analysis: Application to eye modeling

Author keywords

[No Author keywords available]

Indexed keywords

ALGORITHMS; COMPUTER SIMULATION; GAUSSIAN DISTRIBUTION; KNOWLEDGE ACQUISITION; MATHEMATICAL MODELS;

EID: 35148862167     PISSN: 10636919     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/CVPR.2007.383439     Document Type: Conference Paper
Times cited : (18)

References (37)
  • 1
    • 0033697613 scopus 로고    scopus 로고
    • Detecting and Tracking Eyes by using their Physiological Properties
    • A. Haro, M. Flickner, and I. Essa. Detecting and Tracking Eyes by using their Physiological Properties. In IEEE CVPR, pages 163-168, 2000. 5
    • (2000) IEEE CVPR
    • Haro, A.1    Flickner, M.2    Essa, I.3
  • 2
    • 0030214261 scopus 로고    scopus 로고
    • Image retrieval using color and shape
    • 298
    • A. K. Jain and A. Vailaya. Image retrieval using color and shape. Pattern Recognition, 29(8): 1233-1244, 1996. 5
    • (1996) Pattern Recognition , vol.1233-1244 , pp. 5
    • Jain, A.K.1    Vailaya, A.2
  • 7
    • 70350249943 scopus 로고    scopus 로고
    • Monte Carlo Statistical Methods
    • C.P. Robert and G. Casella. Monte Carlo Statistical Methods. Springer-Verlag, 1999. 2, 3, 4
    • (1999) Springer-Verlag , vol.2 , Issue.3 , pp. 4
    • Robert, C.P.1    Casella, G.2
  • 8
    • 33846964517 scopus 로고    scopus 로고
    • Boosting particle filter-based eye tracker performance through adapted likelihood function to reflexions and light changes
    • D. W. Hansen and R. I. Hammoud. Boosting particle filter-based eye tracker performance through adapted likelihood function to reflexions and light changes. In IEEE Conference on Advanced Video and Signal Based Surveillance, pages 111-116, 2005. 5
    • (2005) IEEE Conference on Advanced Video and Signal Based Surveillance
    • Hansen, D.W.1    Hammoud, R.I.2
  • 9
    • 2242491935 scopus 로고    scopus 로고
    • Computational and Inferential Difficulties With Mixture Posterior Distributions
    • G. Celeux, M. Hurn and C. P. Robert. Computational and Inferential Difficulties With Mixture Posterior Distributions. Journal, of the Am. Stat. Association, 95:957-970, 2000. 4
    • (2000) Journal, of the Am. Stat. Association , vol.95 , Issue.957-970 , pp. 4
    • Celeux, G.1    Hurn, M.2    Robert, C.P.3
  • 10
    • 0026836139 scopus 로고
    • Bayesian Diagnosis in Expert Systems
    • 541-2
    • G. D. Kleiter. Bayesian Diagnosis in Expert Systems. Artificial Intelligence, 54(1-2):1-32, 1992. 3
    • (1992) Artificial Intelligence , vol.1-32 , pp. 3
    • Kleiter, G.D.1
  • 11
    • 35148846724 scopus 로고    scopus 로고
    • G.J. McLachlan and D. Peel. Finite Mixture Models. New York: Wiley, 2000. 1
    • G.J. McLachlan and D. Peel. Finite Mixture Models. New York: Wiley, 2000. 1
  • 14
    • 0022808786 scopus 로고    scopus 로고
    • J. Canny. A Computational Approach to Edge Detection. IEEE Transactions on PAMI, 8:679-698, 1986. 5
    • J. Canny. A Computational Approach to Edge Detection. IEEE Transactions on PAMI, 8:679-698, 1986. 5
  • 15
    • 33646705864 scopus 로고    scopus 로고
    • Bayesian modeling and inference on mixtures of distributions
    • D. Dey and C. Rao, editors, Elsevier-Sciences
    • J.M. Marin, K. Mengersen and C.P. Robert. Bayesian modeling and inference on mixtures of distributions. In D. Dey and C. Rao, editors, Handbook of Statistics 25. Elsevier-Sciences, 2004. 2
    • (2004) Handbook of Statistics 25 , pp. 2
    • Marin, J.M.1    Mengersen, K.2    Robert, C.P.3
  • 16
    • 0035683456 scopus 로고    scopus 로고
    • Communication Via Eye Blinks: Detection and Duration Analysis in Real Time
    • K. Grauman, M. Betke, J. Gips, and G. R. Bradski. Communication Via Eye Blinks: Detection and Duration Analysis in Real Time. In IEEE CVPR, pages 1010-1017, 2001. 5
    • (2001) IEEE CVPR
    • Grauman, K.1    Betke, M.2    Gips, J.3    Bradski, G.R.4
  • 17
    • 0034374610 scopus 로고    scopus 로고
    • Bayesian Analysis of mixture Models with an Unknown Number of Components: An Alternative to reversible Jump Methods
    • M. Stephens. Bayesian Analysis of mixture Models with an Unknown Number of Components: An Alternative to reversible Jump Methods. Annals of Statistics, 28:40-74, 2000. 4
    • (2000) Annals of Statistics , vol.28 , Issue.40-74 , pp. 4
    • Stephens, M.1
  • 18
    • 0022561870 scopus 로고
    • Sum and Difference Histograms for Texture Classification
    • M. Unser. Sum and Difference Histograms for Texture Classification. IEEE Transactions on RAMI, 8(1):118-125, 1986. 5
    • (1986) IEEE Transactions on RAMI , vol.8 , Issue.1
    • Unser, M.1
  • 19
    • 35148881473 scopus 로고    scopus 로고
    • N. Bouguila and D. Ziou. MML-Based Approach for High-Dimensional Learning using the Generalized Dirichlet Mixture. In Proc. of the 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05) - Workshops - 03, page 53, 2005. 1
    • N. Bouguila and D. Ziou. MML-Based Approach for High-Dimensional Learning using the Generalized Dirichlet Mixture. In Proc. of the 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05) - Workshops - Volume 03, page 53, 2005. 1
  • 20
    • 33747684076 scopus 로고    scopus 로고
    • A Hybrid SEM Algorithm for High-Dimensional Unsupervised Learning Using a Finite Generalized Dirichlet Mixture
    • N. Bouguila and D. Ziou. A Hybrid SEM Algorithm for High-Dimensional Unsupervised Learning Using a Finite Generalized Dirichlet Mixture. IEEE Transactions on Image Processing, 15(9):2657-2668, 2006. 1
    • (2006) IEEE Transactions on Image Processing , vol.15 , Issue.9
    • Bouguila, N.1    Ziou, D.2
  • 21
    • 33746365837 scopus 로고    scopus 로고
    • Unsupervised Selection of a Finite Dirichlet Mixture Model: An MML-Based Approach
    • N. Bouguila and D. Ziou. Unsupervised Selection of a Finite Dirichlet Mixture Model: An MML-Based Approach. IEEE Transactions on Knowledge and Data Engineering, 18(8):993-1009, 2006. 1
    • (2006) IEEE Transactions on Knowledge and Data Engineering , vol.18 , Issue.8
    • Bouguila, N.1    Ziou, D.2
  • 22
    • 10044276227 scopus 로고    scopus 로고
    • A Powerful Finite Mixture Model Based on the Generalized Dirichlet Distribution: Unsuper-vised Learning and Applications
    • Cambridge, United Kingdom, Aout
    • N. Bouguila and D. Ziou. A Powerful Finite Mixture Model Based on the Generalized Dirichlet Distribution: Unsuper-vised Learning and Applications. In Proceedings of the 17th IEEE International Conference on Pattern Recognition, ICPR2004, pages 280-283, Cambridge, United Kingdom, Aout 2004. 1
    • (2004) Proceedings of the 17th IEEE International Conference on Pattern Recognition, ICPR2004
    • Bouguila, N.1    Ziou, D.2
  • 24
    • 33646682404 scopus 로고    scopus 로고
    • Practical Bayesian Estimation of a Finite Beta Mixture Through Gibbs Sampling and its Applications
    • 162
    • N. Bouguila, D. Ziou and E. Monga. Practical Bayesian Estimation of a Finite Beta Mixture Through Gibbs Sampling and its Applications. Statistics and Computing, 16(2):215-225, 2006. 2
    • (2006) Statistics and Computing , vol.215-225 , pp. 2
    • Bouguila, N.1    Ziou, D.2    Monga, E.3
  • 25
    • 8344258373 scopus 로고    scopus 로고
    • N. Bouguila, D. Ziou and J. Vaillancourt. Novel Mixtures Based on the Dirichlet Distribution: Application to Data and Image Classification. In P. Perner and A. Rosenfeld, editors, Machine Learning and Data Mining in Pattern Recognition, (MLDM2003), pages 172-181, Leipzig, Germany, 2003. Springer, LNAI2734. 1
    • N. Bouguila, D. Ziou and J. Vaillancourt. Novel Mixtures Based on the Dirichlet Distribution: Application to Data and Image Classification. In P. Perner and A. Rosenfeld, editors, Machine Learning and Data Mining in Pattern Recognition, (MLDM2003), pages 172-181, Leipzig, Germany, 2003. Springer, LNAI2734. 1
  • 26
    • 7444239786 scopus 로고    scopus 로고
    • Unsupervised Learning of a Finite Mixture Model Based on the Dirichlet Distribution and its Application
    • N. Bouguila, D. Ziou and J. Vaillancourt. Unsupervised Learning of a Finite Mixture Model Based on the Dirichlet Distribution and its Application. IEEE Transactions on Image Processing, 13(11):1533-1543, 2004. 1.
    • (2004) IEEE Transactions on Image Processing , vol.13 , Issue.11
    • Bouguila, N.1    Ziou, D.2    Vaillancourt, J.3
  • 28
    • 0010026215 scopus 로고    scopus 로고
    • Reversible Jump MCMC Converging to Birth-and-Death. MCMC and More General Continuous Time Samplers
    • O. Capp, C. P. Robert and T. Rydn. Reversible Jump MCMC Converging to Birth-and-Death. MCMC and More General Continuous Time Samplers. Journal of the Royal Statistical Society, B, 65:679-700, 2002. 4
    • (2002) Journal of the Royal Statistical Society, B , vol.65 , Issue.679-700 , pp. 4
    • Capp, O.1    Robert, C.P.2    Rydn, T.3
  • 30
    • 24644520072 scopus 로고    scopus 로고
    • R. I. Hammoud. A Robust Eye Position Tracker Based on Invariant Local Features, Eye Motion, and Infrared-Eye Responses. In SPIE Automatic Target Recognition XV, 5807, pages 35-43, 2005. 5
    • R. I. Hammoud. A Robust Eye Position Tracker Based on Invariant Local Features, Eye Motion, and Infrared-Eye Responses. In SPIE Automatic Target Recognition XV, Volume 5807, pages 35-43, 2005. 5
  • 31
    • 85075884121 scopus 로고    scopus 로고
    • R. I. Hammoud and D. W Hansen. Biophysics of the eye in computer vision: methods and advanced technologies. In F. Sadjadi and B. Javidi, editors, Physics of Automatic. Target Recognition, Series: Advanced Sciences and Technologies for Security Applications (Optics & Lazers), 3, 2007. 5
    • R. I. Hammoud and D. W Hansen. Biophysics of the eye in computer vision: methods and advanced technologies. In F. Sadjadi and B. Javidi, editors, Physics of Automatic. Target Recognition, Series: Advanced Sciences and Technologies for Security Applications (Optics & Lazers), Vol 3, 2007. 5
  • 34
    • 0031514994 scopus 로고    scopus 로고
    • Estimating Bayes Factors via Posterior Simulation With the Laplace-Metropolis Estimator
    • 92
    • S. M. Lewis and A. E. Raftery. Estimating Bayes Factors via Posterior Simulation With the Laplace-Metropolis Estimator. Journal of the Am. Stat. Association, 92:648-655, 1997. 2, 5
    • (1997) Journal of the Am. Stat. Association , vol.648-655 , Issue.2 , pp. 5
    • Lewis, S.M.1    Raftery, A.E.2
  • 35
    • 18244378520 scopus 로고    scopus 로고
    • On Bayesian Analysis of Mixtures with an Unknown Number of Components (With Discussion)
    • S. Richardson and P. J. Green. On Bayesian Analysis of Mixtures with an Unknown Number of Components (With Discussion). Journal of the Royal Statistical Society, B, 59:731-792, 1997. 4
    • (1997) Journal of the Royal Statistical Society, B , vol.59 , Issue.731-792 , pp. 4
    • Richardson, S.1    Green, P.J.2
  • 36
    • 0032663328 scopus 로고    scopus 로고
    • Filtering for Texture Classication: A Comparative Study
    • T. Randen, and J. H. Husoy. Filtering for Texture Classication: A Comparative Study. IEEE Transactions on PAMI, 21(4):291-310, 1999. 5
    • (1999) IEEE Transactions on PAMI , vol.21 , Issue.4
    • Randen, T.1    Husoy, J.H.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.