메뉴 건너뛰기




Volumn 3, Issue , 2005, Pages 2352-2359

An ensemble approach to building mercer kernels with prior information

Author keywords

[No Author keywords available]

Indexed keywords

ALGEBRAIC COMPUTATIONS; IMAGE SPACE; MERCER KERNELS; SCHEMA LIBRARY;

EID: 27944475901     PISSN: 1062922X     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (4)

References (17)
  • 1
    • 0041965980 scopus 로고    scopus 로고
    • Cluster ensembles a knowledge reuse framework for combining multiple partitions
    • A. Strehl and J. Ghosh, Cluster ensembles a knowledge reuse framework for combining multiple partitions, JMLR 3 (2002), 583-617.
    • (2002) JMLR , vol.3 , pp. 583-617
    • Strehl, A.1    Ghosh, J.2
  • 3
    • 0000735610 scopus 로고
    • Operations for learning with graphical models
    • W. L. Buntine, Operations for learning with graphical models, JAIR 2 (1994), 159-225.
    • (1994) JAIR , vol.2 , pp. 159-225
    • Buntine, W.L.1
  • 4
    • 0038154445 scopus 로고    scopus 로고
    • Towards automated synthesis of data mining programs
    • (S. Chaudhuri and D. Madigan, eds.), ACM Press, August 15-18
    • W.L. Buntine, B. Fischer, and T. Pressburger, Towards automated synthesis of data mining programs, Proc. 5th KDD (S. Chaudhuri and D. Madigan, eds.), ACM Press, August 15-18 1999, pp. 372-376.
    • (1999) Proc. 5th KDD , pp. 372-376
    • Buntine, W.L.1    Fischer, B.2    Pressburger, T.3
  • 6
    • 0002607026 scopus 로고    scopus 로고
    • Bayesian classification (AutoClass): Theory and results
    • (U. M. Fayyad, G. Piatetsky-Shapiro, P. Smyth, and R. Uthurusamy, eds.), AAAI Press
    • P. Cheeseman and J. Stutz, Bayesian classification (AutoClass): Theory and results, Proc. 2nd KDD (U. M. Fayyad, G. Piatetsky-Shapiro, P. Smyth, and R. Uthurusamy, eds.), AAAI Press, 1996, pp. 153-180.
    • (1996) Proc. 2nd KDD , pp. 153-180
    • Cheeseman, P.1    Stutz, J.2
  • 7
    • 0002629270 scopus 로고
    • Maximum likelihood from incomplete data via the em algorithm
    • A. P. Dempster, N. M. Laird, and D. B. Rubin, Maximum likelihood from incomplete data via the EM algorithm (with discussion), J. Royal Statistical Society B 39 (1977), 1-38.
    • (1977) J. Royal Statistical Society B , vol.39 , pp. 1-38
    • Dempster, A.P.1    Laird, N.M.2    Rubin, D.B.3
  • 8
    • 0037851834 scopus 로고    scopus 로고
    • AutoBayes: A system for generating data analysis programs from statistical models
    • B. Fischer and J. Schumann, AutoBayes: A system for generating data analysis programs from statistical models, JFP 13 (2003), 483-508.
    • (2003) JFP , vol.13 , pp. 483-508
    • Fischer, B.1    Schumann, J.2
  • 9
    • 0742265347 scopus 로고    scopus 로고
    • MCLUST: Software for model-based clustering, density estimation, and discriminant analysis
    • Department of Statistics, University of Washington, October
    • C. Fraley and A. E. Raftery, MCLUST: Software for model-based clustering, density estimation, and discriminant analysis, Tech. Report 415, Department of Statistics, University of Washington, October 2002.
    • (2002) Tech. Report , vol.415
    • Fraley, C.1    Raftery, A.E.2
  • 10
    • 79955373472 scopus 로고    scopus 로고
    • Automatic derivation of statistical algorithms: The em family and beyond
    • (S. Becker, S. Thrun, and K. Obermayer, eds.), MIT Press
    • A. G. Gray, B. Fischer, J. Schumann, and W. Buntine, Automatic derivation of statistical algorithms: The EM family and beyond, NIPS 15 (S. Becker, S. Thrun, and K. Obermayer, eds.), MIT Press, 2003, pp. 689-696.
    • (2003) NIPS , vol.15 , pp. 689-696
    • Gray, A.G.1    Fischer, B.2    Schumann, J.3    Buntine, W.4
  • 11
    • 0004019973 scopus 로고    scopus 로고
    • Convolution kernels on discrete structures
    • University of California Santa Cruz
    • D. Haussler, Convolution kernels on discrete structures, Tech. report, University of California Santa Cruz, 1999.
    • (1999) Tech. Report
    • Haussler, D.1
  • 13
  • 16
    • 2942568162 scopus 로고    scopus 로고
    • Mixture density mercer kernels: A method to learn kernels directly from data
    • A. N. Srivastava, Mixture density mercer kernels: A method to learn kernels directly from data, Proc. 2004 SIAM Data Mining Conference (2004).
    • (2004) Proc. 2004 SIAM Data Mining Conference
    • Srivastava, A.N.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.