메뉴 건너뛰기




Volumn , Issue , 2007, Pages

Kernel sharing with joint boosting for multi-class concept detection

Author keywords

[No Author keywords available]

Indexed keywords

COMPUTATIONAL COMPLEXITY; ITERATIVE METHODS; LEARNING SYSTEMS;

EID: 35148857184     PISSN: 10636919     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/CVPR.2007.383483     Document Type: Conference Paper
Times cited : (12)

References (21)
  • 1
    • 34548240132 scopus 로고    scopus 로고
    • IBM research TRECVID-2004 video retrieval system
    • A. Amir, et al. IBM research TRECVID-2004 video retrieval system. Proc. NIST TRECVID Workshop, 2004. 1, 5
    • (2004) Proc. NIST TRECVID Workshop , vol.1 , pp. 5
    • Amir, A.1
  • 2
    • 0034250160 scopus 로고    scopus 로고
    • An experimental comparison of three methods for constructing ensembles of decision trees: Bagging, boosting, randomization
    • T.G. Dietterich. An experimental comparison of three methods for constructing ensembles of decision trees: bagging, boosting, randomization. Machine Learning, 40(2), 1999. 6
    • (1999) Machine Learning , vol.40 , Issue.2 , pp. 6
    • Dietterich, T.G.1
  • 3
    • 0041940256 scopus 로고    scopus 로고
    • Object class recognition by unsupervised scale-invariant learning
    • R. Fergus, et al. Object class recognition by unsupervised scale-invariant learning. Proc.CVPR, 264-271, 2003. 1, 2, 3
    • (2003) Proc.CVPR , vol.1 , Issue.2
    • Fergus, R.1
  • 4
    • 35148829771 scopus 로고    scopus 로고
    • J. Friedman and et al. Additive logistic regression: a statistical view of boosting, 1998. Dept. Statistics, Stanford University Technical Report. 2, 3, 4, 5
    • J. Friedman and et al. Additive logistic regression: a statistical view of boosting, 1998. Dept. Statistics, Stanford University Technical Report. 2, 3, 4, 5
  • 5
    • 33745855044 scopus 로고    scopus 로고
    • The pyramid match kernel: Discriminative classification with sets of image features
    • 2
    • K. Grauman and T. Darrel. The pyramid match kernel: discriminative classification with sets of image features. Proc. ICCV, 2:1458-1465, 2005. 1, 3
    • (2005) Proc. ICCV , vol.1458-1465 , Issue.1 , pp. 3
    • Grauman, K.1    Darrel, T.2
  • 6
    • 34247623861 scopus 로고    scopus 로고
    • Approximate correspondences in high dimensions
    • K. Grauman and T. Darrel. Approximate correspondences in high dimensions. Advances in NIPS, 2006. 1, 2, 3
    • (2006) Advances in NIPS , vol.1 , Issue.2 , pp. 3
    • Grauman, K.1    Darrel, T.2
  • 7
    • 33745181681 scopus 로고    scopus 로고
    • A discriminative framework for modeling object class
    • A. Holub and P. Perona. A discriminative framework for modeling object class. Proc. CVPR, 1:664-671, 2005. 1
    • (2005) Proc. CVPR , vol.1 , Issue.664-671 , pp. 1
    • Holub, A.1    Perona, P.2
  • 8
    • 32944455697 scopus 로고    scopus 로고
    • W. Jiang and et al. Similarity-based online feature selection in content-based image retrieval. IEEE Trans. on Image Processing, (3):702-712, 2006. 1, 2
    • W. Jiang and et al. Similarity-based online feature selection in content-based image retrieval. IEEE Trans. on Image Processing, (3):702-712, 2006. 1, 2
  • 9
    • 33845572523 scopus 로고    scopus 로고
    • S. Lazebnik and et al. Beyond bags of features: spatial pyramid matching for recognizing natual scene categories. Proc. CVPR, 2:2169-2178, 2006. 1, 2, 3, 5, 6
    • S. Lazebnik and et al. Beyond bags of features: spatial pyramid matching for recognizing natual scene categories. Proc. CVPR, 2:2169-2178, 2006. 1, 2, 3, 5, 6
  • 11
    • 33846249191 scopus 로고    scopus 로고
    • Sampling strategies for bag-of-features image classification
    • E. Nowak and et al. Sampling strategies for bag-of-features image classification. Proc ECCV, 2006. 1
    • (2006) Proc ECCV , pp. 1
    • Nowak, E.1    and et, al.2
  • 12
    • 84901933469 scopus 로고    scopus 로고
    • Modeling the shape of the scene:a holistic representation of the spatial envelope
    • A. Oliva, et al. Modeling the shape of the scene:a holistic representation of the spatial envelope. IJCV, 43(2), 2001. 2
    • (2001) IJCV , vol.43 , Issue.2 , pp. 2
    • Oliva, A.1
  • 13
    • 31544472083 scopus 로고    scopus 로고
    • A. Opelt and et al. Generic object recognition with boosting. IEEE Trans, on PAMI, 28(3):416-431, 2006. 1, 3
    • A. Opelt and et al. Generic object recognition with boosting. IEEE Trans, on PAMI, 28(3):416-431, 2006. 1, 3
  • 14
    • 33845573438 scopus 로고    scopus 로고
    • A. Opelt and et al. Incremental learning of object detectors using a visual shape alphabet. Proc. CVPR, 1:3 10,2006. 4, 6
    • A. Opelt and et al. Incremental learning of object detectors using a visual shape alphabet. Proc. CVPR, 1:3 10,2006. 4, 6
  • 15
    • 0031633979 scopus 로고    scopus 로고
    • R. Schapire and Y. Singer. Improved boosting algorithm using confidence-rated predictions. Proc. Annual Conf. on Computational Learning Theory, pages 80-9.1, 1998. 4
    • R. Schapire and Y. Singer. Improved boosting algorithm using confidence-rated predictions. Proc. Annual Conf. on Computational Learning Theory, pages 80-9.1, 1998. 4
  • 16
    • 0033682358 scopus 로고    scopus 로고
    • Boosting image retrieval
    • K. Tieu and P. Viola. Boosting image retrieval. Proc. CVPR, pp.228-235, 2000. 4
    • (2000) Proc. CVPR
    • Tieu, K.1    Viola, P.2
  • 17
    • 5044224293 scopus 로고    scopus 로고
    • A. Torralba and et al Sharing features: effective boosting procedure for multiclass object detecion. Proc CVPR, 2:762-769, 2004. 2, 3, 4, 5, 6
    • A. Torralba and et al Sharing features: effective boosting procedure for multiclass object detecion. Proc CVPR, 2:762-769, 2004. 2, 3, 4, 5, 6
  • 18
    • 35148856515 scopus 로고    scopus 로고
    • TRECVID. Tree video retrieval, evaluations, 2005. in http://wwwn.lpir. nist.gov/projects/trecvid/. 2, 5, 6
    • TRECVID. Tree video retrieval, evaluations, 2005. in http://wwwn.lpir. nist.gov/projects/trecvid/. 2, 5, 6
  • 19
    • 0345414121 scopus 로고    scopus 로고
    • C. Wallraven and et al. Recognition with local features: the kernel, recipe. Proc ICCV, 1:257-264, 2003. 1, 2
    • C. Wallraven and et al. Recognition with local features: the kernel, recipe. Proc ICCV, 1:257-264, 2003. 1, 2
  • 20
    • 33845573244 scopus 로고    scopus 로고
    • A generative-discriminative hybrid method for multi-view object detection
    • D. Zhang, et al., A generative-discriminative hybrid method for multi-view object detection. Proc CVPR, vol.2, 2006. 1.
    • (2006) Proc CVPR , vol.2 , pp. 1
    • Zhang, D.1
  • 21
    • 35148847618 scopus 로고    scopus 로고
    • J. Zhang and et al. Local features and kernels for classification of texture and object categories: an in-depth study, 2005. Technical Report RR-5737, INRIA Phône-Alpes. 1, 2
    • J. Zhang and et al. Local features and kernels for classification of texture and object categories: an in-depth study, 2005. Technical Report RR-5737, INRIA Phône-Alpes. 1, 2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.