메뉴 건너뛰기




Volumn 3181, Issue , 2004, Pages 309-319

Diversity in random subspacing ensembles

Author keywords

[No Author keywords available]

Indexed keywords

ARTIFICIAL INTELLIGENCE; DATA MINING; DATA WAREHOUSES;

EID: 35048891116     PISSN: 03029743     EISSN: 16113349     Source Type: Book Series    
DOI: 10.1007/978-3-540-30076-2_31     Document Type: Article
Times cited : (6)

References (19)
  • 1
    • 0032645080 scopus 로고    scopus 로고
    • An empirical comparison of voting classification algorithms: Bagging, boosting, and variants
    • Bauer E., R. Kohavi, An empirical comparison of voting classification algorithms: bagging, boosting, and variants, Machine Learning, 36 (1,2) (1999) 105-139.
    • (1999) Machine Learning , vol.36 , Issue.1-2 , pp. 105-139
    • Bauer, E.1    Kohavi, R.2
  • 2
    • 0003408496 scopus 로고    scopus 로고
    • Dept. of Information and Computer Science, University of California, Irvine, CA
    • Blake C.L., E. Keogh, C.J. Merz, UCI repository of machine learning databases [http:// www.ics.uci.edu/ ~mleam/ MLRepository.html], Dept. of Information and Computer Science, University of California, Irvine, CA, 1999.
    • (1999) UCI Repository of Machine Learning Databases
    • Blake, C.L.1    Keogh, E.2    Merz, C.J.3
  • 4
    • 84974722422 scopus 로고    scopus 로고
    • Diversity versus quality in classification ensembles based on feature selection
    • th European Conf. On Machine Learning, Barcelona, Spain, Springer
    • th European Conf. On Machine Learning, Barcelona, Spain, LNCS 1810, Springer, 2000, pp. 109-116.
    • (2000) LNCS , vol.1810 , pp. 109-116
    • Cunningham, P.1    Camey, J.2
  • 5
    • 0034250160 scopus 로고    scopus 로고
    • An experimental comparison of three methods for constructing ensembles of decision trees: Bagging, boosting, and randomization
    • Dietterich T.G., An experimental comparison of three methods for constructing ensembles of decision trees: bagging, boosting, and randomization, Machine Learning 40 (2) (2000) 139-157.
    • (2000) Machine Learning , vol.40 , Issue.2 , pp. 139-157
    • Dietterich, T.G.1
  • 6
    • 0031361611 scopus 로고    scopus 로고
    • Machine learning research: Four current directions
    • Dietterich T.G., Machine learning research: four current directions, AI Magazine 18(4) (1997)97-136.
    • (1997) AI Magazine , vol.18 , Issue.4 , pp. 97-136
    • Dietterich, T.G.1
  • 7
    • 0031269184 scopus 로고    scopus 로고
    • On the optimality of the simple Bayesian classifier under zero-one loss
    • Domingos P., M. Pazzani, On the optimality of the simple Bayesian classifier under zero-one loss, Machine Learning, 29 (2,3) (1997) 103-130.
    • (1997) Machine Learning , vol.29 , Issue.2-3 , pp. 103-130
    • Domingos, P.1    Pazzani, M.2
  • 8
    • 0035420134 scopus 로고    scopus 로고
    • Design of effective neural network ensembles for image classification processes
    • Giacinto G., F. Roli. Design of effective neural network ensembles for image classification processes. Image Vision and Computing Journal, 19(9-10):699-707, 2001.
    • (2001) Image Vision and Computing Journal , vol.19 , Issue.9-10 , pp. 699-707
    • Giacinto, G.1    Roli, F.2
  • 10
    • 85054435084 scopus 로고
    • Neural network ensembles, cross validation, and active learning
    • D. Touretzky, T. Leen (Eds.), Cambridge, MA, MIT Press
    • Krogh A., J. Vedelsby, Neural network ensembles, cross validation, and active learning, In: D. Touretzky, T. Leen (Eds.), Advances in Neural Information Processing Systems, Vol. 7, Cambridge, MA, MIT Press, 1995, pp. 231-238.
    • (1995) Advances in Neural Information Processing Systems , vol.7 , pp. 231-238
    • Krogh, A.1    Vedelsby, J.2
  • 11
    • 0037403516 scopus 로고    scopus 로고
    • Measures of diversity in classifier ensembles and their relationship with the ensemble accuracy
    • Kuncheva L.I., C.J. Whitaker, Measures of diversity in classifier ensembles and their relationship with the ensemble accuracy. Machine Learning 51 (2) (2003) 181-207.
    • (2003) Machine Learning , vol.51 , Issue.2 , pp. 181-207
    • Kuncheva, L.I.1    Whitaker, C.J.2
  • 13
    • 84957702069 scopus 로고    scopus 로고
    • A dynamic integration algorithm for an ensemble of classifiers
    • Z.W. Ras, A. Skowron (eds.), Foundations of Intelligent Systems: 11th Int. Symp. ISMIS'99, Warsaw, Poland, Springer
    • Puuronen S., V. Terziyan, A. Tsymbal, A dynamic integration algorithm for an ensemble of classifiers, in: Z.W. Ras, A. Skowron (eds.), Foundations of Intelligent Systems: 11th Int. Symp. ISMIS'99, Warsaw, Poland, LNAI 1609, Springer, 1999, pp. 592-600.
    • (1999) LNAI , vol.1609 , pp. 592-600
    • Puuronen, S.1    Terziyan, V.2    Tsymbal, A.3
  • 14
    • 0000245470 scopus 로고
    • Selecting a classification method by cross-validation
    • Schaffer C., Selecting a classification method by cross-validation, Machine Learning 13 (1993) 135-143.
    • (1993) Machine Learning , vol.13 , pp. 135-143
    • Schaffer, C.1
  • 15
    • 0036609602 scopus 로고    scopus 로고
    • Relationship between combination methods and measures of diversity in combining classifiers
    • Shipp C.A., L.I. Kuncheva, Relationship between combination methods and measures of diversity in combining classifiers, Information Fusion 3 (2002) 135-148.
    • (2002) Information Fusion , vol.3 , pp. 135-148
    • Shipp, C.A.1    Kuncheva, L.I.2
  • 18
    • 0038137315 scopus 로고    scopus 로고
    • Ensemble feature selection with the simple Bayesian classification
    • Elsevier Science
    • Tsymbal A., S. Puuronen, D. Patterson, Ensemble feature selection with the simple Bayesian classification, Information Fusion, Elsevier Science 4 (2) (2003) 87-100.
    • (2003) Information Fusion , vol.4 , Issue.2 , pp. 87-100
    • Tsymbal, A.1    Puuronen, S.2    Patterson, D.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.