-
1
-
-
0032645080
-
An empirical comparison of voting classification algorithms: Bagging, boosting, and variants
-
Bauer E., R. Kohavi, An empirical comparison of voting classification algorithms: bagging, boosting, and variants, Machine Learning, 36 (1,2) (1999) 105-139.
-
(1999)
Machine Learning
, vol.36
, Issue.1-2
, pp. 105-139
-
-
Bauer, E.1
Kohavi, R.2
-
2
-
-
0003408496
-
-
Dept. of Information and Computer Science, University of California, Irvine, CA
-
Blake C.L., E. Keogh, C.J. Merz, UCI repository of machine learning databases [http:// www.ics.uci.edu/ ~mleam/ MLRepository.html], Dept. of Information and Computer Science, University of California, Irvine, CA, 1999.
-
(1999)
UCI Repository of Machine Learning Databases
-
-
Blake, C.L.1
Keogh, E.2
Merz, C.J.3
-
3
-
-
0010687007
-
Creating and exploiting coverage and diversity
-
Portland, OR
-
Bradley C., T. Lane, Creating and exploiting coverage and diversity, in: Proc. AAAI-96 Workshop on Integrating Multiple Learned Models, Portland, OR, 1996, pp. 8-14.
-
(1996)
Proc. AAAI-96 Workshop on Integrating Multiple Learned Models
, pp. 8-14
-
-
Bradley, C.1
Lane, T.2
-
4
-
-
84974722422
-
Diversity versus quality in classification ensembles based on feature selection
-
th European Conf. On Machine Learning, Barcelona, Spain, Springer
-
th European Conf. On Machine Learning, Barcelona, Spain, LNCS 1810, Springer, 2000, pp. 109-116.
-
(2000)
LNCS
, vol.1810
, pp. 109-116
-
-
Cunningham, P.1
Camey, J.2
-
5
-
-
0034250160
-
An experimental comparison of three methods for constructing ensembles of decision trees: Bagging, boosting, and randomization
-
Dietterich T.G., An experimental comparison of three methods for constructing ensembles of decision trees: bagging, boosting, and randomization, Machine Learning 40 (2) (2000) 139-157.
-
(2000)
Machine Learning
, vol.40
, Issue.2
, pp. 139-157
-
-
Dietterich, T.G.1
-
6
-
-
0031361611
-
Machine learning research: Four current directions
-
Dietterich T.G., Machine learning research: four current directions, AI Magazine 18(4) (1997)97-136.
-
(1997)
AI Magazine
, vol.18
, Issue.4
, pp. 97-136
-
-
Dietterich, T.G.1
-
7
-
-
0031269184
-
On the optimality of the simple Bayesian classifier under zero-one loss
-
Domingos P., M. Pazzani, On the optimality of the simple Bayesian classifier under zero-one loss, Machine Learning, 29 (2,3) (1997) 103-130.
-
(1997)
Machine Learning
, vol.29
, Issue.2-3
, pp. 103-130
-
-
Domingos, P.1
Pazzani, M.2
-
8
-
-
0035420134
-
Design of effective neural network ensembles for image classification processes
-
Giacinto G., F. Roli. Design of effective neural network ensembles for image classification processes. Image Vision and Computing Journal, 19(9-10):699-707, 2001.
-
(2001)
Image Vision and Computing Journal
, vol.19
, Issue.9-10
, pp. 699-707
-
-
Giacinto, G.1
Roli, F.2
-
10
-
-
85054435084
-
Neural network ensembles, cross validation, and active learning
-
D. Touretzky, T. Leen (Eds.), Cambridge, MA, MIT Press
-
Krogh A., J. Vedelsby, Neural network ensembles, cross validation, and active learning, In: D. Touretzky, T. Leen (Eds.), Advances in Neural Information Processing Systems, Vol. 7, Cambridge, MA, MIT Press, 1995, pp. 231-238.
-
(1995)
Advances in Neural Information Processing Systems
, vol.7
, pp. 231-238
-
-
Krogh, A.1
Vedelsby, J.2
-
11
-
-
0037403516
-
Measures of diversity in classifier ensembles and their relationship with the ensemble accuracy
-
Kuncheva L.I., C.J. Whitaker, Measures of diversity in classifier ensembles and their relationship with the ensemble accuracy. Machine Learning 51 (2) (2003) 181-207.
-
(2003)
Machine Learning
, vol.51
, Issue.2
, pp. 181-207
-
-
Kuncheva, L.I.1
Whitaker, C.J.2
-
13
-
-
84957702069
-
A dynamic integration algorithm for an ensemble of classifiers
-
Z.W. Ras, A. Skowron (eds.), Foundations of Intelligent Systems: 11th Int. Symp. ISMIS'99, Warsaw, Poland, Springer
-
Puuronen S., V. Terziyan, A. Tsymbal, A dynamic integration algorithm for an ensemble of classifiers, in: Z.W. Ras, A. Skowron (eds.), Foundations of Intelligent Systems: 11th Int. Symp. ISMIS'99, Warsaw, Poland, LNAI 1609, Springer, 1999, pp. 592-600.
-
(1999)
LNAI
, vol.1609
, pp. 592-600
-
-
Puuronen, S.1
Terziyan, V.2
Tsymbal, A.3
-
14
-
-
0000245470
-
Selecting a classification method by cross-validation
-
Schaffer C., Selecting a classification method by cross-validation, Machine Learning 13 (1993) 135-143.
-
(1993)
Machine Learning
, vol.13
, pp. 135-143
-
-
Schaffer, C.1
-
15
-
-
0036609602
-
Relationship between combination methods and measures of diversity in combining classifiers
-
Shipp C.A., L.I. Kuncheva, Relationship between combination methods and measures of diversity in combining classifiers, Information Fusion 3 (2002) 135-148.
-
(2002)
Information Fusion
, vol.3
, pp. 135-148
-
-
Shipp, C.A.1
Kuncheva, L.I.2
-
16
-
-
0345143226
-
The sources of increased accuracy for two proposed boosting algorithms
-
Portland, Oregon, USA
-
Skalak D.B., The sources of increased accuracy for two proposed boosting algorithms, in: AAAI-96 Workshop on Integrating Multiple Models for Improving and Scaling Machine Learning Algorithms (in conjunction with AAAI-96), Portland, Oregon, USA, 1996, pp. 120-125.
-
(1996)
AAAI-96 Workshop on Integrating Multiple Models for Improving and Scaling Machine Learning Algorithms (in Conjunction with AAAI-96)
, pp. 120-125
-
-
Skalak, D.B.1
-
17
-
-
84957007471
-
Bagging and the random subspace method for redundant feature spaces
-
J. Kittler, F. Roli (Eds.), Cambridge, UK
-
nd Int. Workshop on Multiple Classifier Systems MCS 2001, Cambridge, UK, 2001, pp. 1-10.
-
(2001)
nd Int. Workshop on Multiple Classifier Systems MCS 2001
, pp. 1-10
-
-
Skurichina, M.1
Duin, R.P.W.2
-
18
-
-
0038137315
-
Ensemble feature selection with the simple Bayesian classification
-
Elsevier Science
-
Tsymbal A., S. Puuronen, D. Patterson, Ensemble feature selection with the simple Bayesian classification, Information Fusion, Elsevier Science 4 (2) (2003) 87-100.
-
(2003)
Information Fusion
, vol.4
, Issue.2
, pp. 87-100
-
-
Tsymbal, A.1
Puuronen, S.2
Patterson, D.3
-
19
-
-
0005746806
-
Ensemble feature selection with dynamic integration of classifiers
-
Bangor, Wales, U.K.
-
Tsymbal A., S. Puuronen, I. Skrypnyk, Ensemble feature selection with dynamic integration of classifiers, in: Int. ICSC Congress on Computational Intelligence Methods and Applications CIMA'2001, Bangor, Wales, U.K. 2001, pp. 558-564.
-
(2001)
Int. ICSC Congress on Computational Intelligence Methods and Applications CIMA'2001
, pp. 558-564
-
-
Tsymbal, A.1
Puuronen, S.2
Skrypnyk, I.3
|