-
1
-
-
0006683426
-
Maximum agreement subtree in a set of evolutionary trees: Metrics and efficient algorithms
-
A. Amir and D. Keselman. Maximum agreement subtree in a set of evolutionary trees: Metrics and efficient algorithms. SIAM J. on Computing, 26:1656-1669, 1997.
-
(1997)
SIAM J. on Computing
, vol.26
, pp. 1656-1669
-
-
Amir, A.1
Keselman, D.2
-
2
-
-
0004189672
-
-
PhD thesis, Univ. of Canterbury, New Zealand
-
D. Bryant. Building trees, hunting for trees, and comparing trees: theory and methods in phylogenetic analysis. PhD thesis, Univ. of Canterbury, New Zealand, 1997.
-
(1997)
Building Trees, Hunting for Trees, and Comparing Trees: Theory and Methods in Phylogenetic Analysis
-
-
Bryant, D.1
-
3
-
-
84957000934
-
NeighborNet: An agglomerative method for the construction of planar phylogenetic networks
-
nd Workshop on Algorithms in Bioinformatics (WABI 2002), Springer
-
nd Workshop on Algorithms in Bioinformatics (WABI 2002), volume 2452 of LNCS, pages 375-391. Springer, 2002.
-
(2002)
LNCS
, vol.2452
, pp. 375-391
-
-
Bryant, D.1
Moulton, V.2
-
4
-
-
18944380445
-
Computing the maximum agreement of phylogenetic networks
-
th Australasian Theory Symposium (CATS 2004), Elsevier
-
th Australasian Theory Symposium (CATS 2004), volume 91 of ENTCS, pages 134-147. Elsevier, 2004.
-
(2004)
ENTCS
, vol.91
, pp. 134-147
-
-
Choy, C.1
Jansson, J.2
Sadakane, K.3
Sung, W.-K.4
-
5
-
-
0035189546
-
An O(n log n) algorithm for the maximum agreement subtree problem for binary trees
-
R. Cole, M. Farach-Colton, R. Hariharan, T. Przytycka, and M. Thorup. An O(n log n) algorithm for the maximum agreement subtree problem for binary trees. SIAM J. on Computing, 30(5):1385-1404, 2000.
-
(2000)
SIAM J. on Computing
, vol.30
, Issue.5
, pp. 1385-1404
-
-
Cole, R.1
Farach-Colton, M.2
Hariharan, R.3
Przytycka, T.4
Thorup, M.5
-
9
-
-
0043045976
-
On the complexity of constructing evolutionary trees
-
L. Ga̧sieniec, J. Jansson, A. Lingas, and A. Östlin. On the complexity of constructing evolutionary trees. Journal of Combinatorial Optimization, 3:183-197, 1999.
-
(1999)
Journal of Combinatorial Optimization
, vol.3
, pp. 183-197
-
-
Ga̧sieniec, L.1
Jansson, J.2
Lingas, A.3
Östlin, A.4
-
11
-
-
0025299784
-
Reconstructing evolution of sequences subject to recombination using parsimony
-
J. Hein. Reconstructing evolution of sequences subject to recombination using parsimony. Mathematical Biosciences, 98(2):185-200, 1990.
-
(1990)
Mathematical Biosciences
, vol.98
, Issue.2
, pp. 185-200
-
-
Hein, J.1
-
14
-
-
0347752674
-
An even faster and more unifying algorithm for comparing trees via unbalanced bipartite matchings
-
M.-Y. Kao, T.-W. Lam, W.-K. Sung, and H.-F. Ting. An even faster and more unifying algorithm for comparing trees via unbalanced bipartite matchings. Journal of Algorithms, 40(2):212-233, 2001.
-
(2001)
Journal of Algorithms
, vol.40
, Issue.2
, pp. 212-233
-
-
Kao, M.-Y.1
Lam, T.-W.2
Sung, W.-K.3
Ting, H.-F.4
-
15
-
-
0003421005
-
-
Sinauer Associates, Inc., Sunderland
-
W.-H. Li. Molecular Evolution. Sinauer Associates, Inc., Sunderland, 1997.
-
(1997)
Molecular Evolution
-
-
Li, W.-H.1
-
18
-
-
0035139147
-
Intraspecific gene genealogies: Trees grafting into networks
-
D. Posada and K. A. Crandall. Intraspecific gene genealogies: trees grafting into networks. TRENDS in Ecology & Evolution, 16(1):37-45, 2001.
-
(2001)
TRENDS in Ecology & Evolution
, vol.16
, Issue.1
, pp. 37-45
-
-
Posada, D.1
Crandall, K.A.2
-
20
-
-
0027912455
-
Kaikoura tree theorems: Computing the maximum agreement subtree
-
M. Steel and T. Warnow. Kaikoura tree theorems: Computing the maximum agreement subtree. Information Processing Letters, 48:77-82, 1993.
-
(1993)
Information Processing Letters
, vol.48
, pp. 77-82
-
-
Steel, M.1
Warnow, T.2
-
21
-
-
0034913468
-
Perfect phylogenetic networks with recombination
-
L. Wang, K. Zhang, and L. Zhang. Perfect phylogenetic networks with recombination. Journal of Computational Biology, 8(1):69-78, 2001.
-
(2001)
Journal of Computational Biology
, vol.8
, Issue.1
, pp. 69-78
-
-
Wang, L.1
Zhang, K.2
Zhang, L.3
|