메뉴 건너뛰기




Volumn 2352, Issue , 2002, Pages 561-576

Multivariate saddle point detection for statistical clustering

Author keywords

Cluster significance; Grouping and segmentation; Image features; Nonparametric clustering

Indexed keywords

BANDWIDTH; IMAGE SEGMENTATION; ITERATIVE METHODS; MAXIMUM LIKELIHOOD ESTIMATION; PROBABILITY DENSITY FUNCTION; STATISTICAL TESTS;

EID: 35048829595     PISSN: 03029743     EISSN: 16113349     Source Type: Book Series    
DOI: 10.1007/3-540-47977-5_37     Document Type: Conference Paper
Times cited : (18)

References (32)
  • 2
    • 0033284856 scopus 로고    scopus 로고
    • Mean shift analysis and applications
    • Kerkyra, Greece, September
    • D. Comaniciu and P. Meer. Mean shift analysis and applications. In Proc. Int. Conf. Computer Vision, Kerkyra, Greece, pages 1197–1203, September 1999.
    • (1999) Proc. Int. Conf. Computer Vision, , pp. 1197-1203
    • Comaniciu, D.1    Meer, P.2
  • 3
    • 0036565814 scopus 로고    scopus 로고
    • Mean shift: A robust approach toward feature space analysis
    • D. Comaniciu and P. Meer. Mean shift: A robust approach toward feature space analysis. IEEE Trans. Pattern Anal. Machine Intell., 24(5):To appear, 2002.
    • (2002) IEEE Trans. Pattern Anal. Machine Intell , vol.24 , Issue.5
    • Comaniciu, D.1    Meer, P.2
  • 4
    • 0034857778 scopus 로고    scopus 로고
    • The variable bandwidth mean shift and data-driven scale selection
    • Vancouver, Canada, July
    • D. Comaniciu, V. Ramesh, and P. Meer. The variable bandwidth mean shift and data-driven scale selection. In Proceedings International Conference on Computer Vision, Vancouver, Canada, volume 1, pages 438–445, July 2001.
    • (2001) Proceedings International Conference on Computer Vision, , vol.1 , pp. 438-445
    • Comaniciu, D.1    Ramesh, V.2    Meer, P.3
  • 7
    • 0032269108 scopus 로고    scopus 로고
    • How many clusters? Which clustering method? - Answers via model-based cluster analysis
    • C. Fraley and A. Raftery. How many clusters? which clustering method? - answers via model-based cluster analysis. Computer Journal, 41:578–588, 1998.
    • (1998) Computer Journal , vol.41 , pp. 578-588
    • Fraley, C.1    Raftery, A.2
  • 9
    • 0016421071 scopus 로고
    • The estimation of the gradient of a density function, with applications in pattern recognition
    • K. Fukunaga and L. D. Hostetler. The estimation of the gradient of a density function, with applications in pattern recognition. IEEE Trans. Information Theory, 21:32–40, 1975.
    • (1975) IEEE Trans. Information Theory , vol.21 , pp. 32-40
    • Fukunaga, K.1    Hostetler, L.D.2
  • 10
    • 0035481858 scopus 로고    scopus 로고
    • Self organization in vision: Stochastic clustering for image segmentation, perceptual grouping, and image database organization
    • Y. Gdalyahu, D. Weinshall, and M. Werman. Self organization in vision: Stochastic clustering for image segmentation, perceptual grouping, and image database organization. IEEE Trans. Pattern Anal. Machine Intell., 23(10):1053–1074, 2001.
    • (2001) IEEE Trans. Pattern Anal. Machine Intell. , vol.23 , Issue.10 , pp. 1053-1074
    • Gdalyahu, Y.1    Weinshall, D.2    Werman, M.3
  • 12
    • 33748888529 scopus 로고
    • Statistical theory in clustering
    • J. Hartigan. Statistical theory in clustering. Journal of Classification, 2:63–76, 1985.
    • (1985) Journal of Classification , vol.2 , pp. 63-76
    • Hartigan, J.1
  • 14
    • 0000327364 scopus 로고    scopus 로고
    • A dimer method for finding saddle points on high dimensional potential surfaces using only first derivatives
    • G. Henkelman and H. Jonsson. A dimer method for finding saddle points on high dimensional potential surfaces using only first derivatives. Journal of Chemical Physics, 111:7010–7022, 1999.
    • (1999) Journal of Chemical Physics , vol.111 , pp. 7010-7022
    • Henkelman, G.1    Jonsson, H.2
  • 15
    • 0034513054 scopus 로고    scopus 로고
    • A climbing image nudged elastic band method for finding saddle points and minimum energy paths
    • G. Henkelman, B. Uberuaga, and H. Jonsson. A climbing image nudged elastic band method for finding saddle points and minimum energy paths. Journal of Chemical Physics, 113:9901–9904, 2000.
    • (2000) Journal of Chemical Physics , vol.113 , pp. 9901-9904
    • Henkelman, G.1    Uberuaga, B.2    Jonsson, H.3
  • 17
  • 21
    • 34250115918 scopus 로고
    • An examination of procedures for determining the number of clusters in a data set
    • G. Milligan and M. Cooper. An examination of procedures for determining the number of clusters in a data set. Psychometrika, 50:159–179, 1985.
    • (1985) Psychometrika , vol.50 , pp. 159-179
    • Milligan, G.1    Cooper, M.2
  • 22
    • 0031510027 scopus 로고    scopus 로고
    • Nonparametric testing of the existence of modes
    • M. Minnotte. Nonparametric testing of the existence of modes. The Annals of Statistics, 25(4):1646–1660, 1997.
    • (1997) The Annals of Statistics , vol.25 , Issue.4 , pp. 1646-1660
    • Minnotte, M.1
  • 23
    • 84899029127 scopus 로고    scopus 로고
    • Very fast EM-based mixture model clustering using multiresolution kd-trees
    • MIT Press
    • A. Moore. Very fast EM-based mixture model clustering using multiresolution kd-trees. In Advances in Neural Information Processing Systems 11. MIT Press, 1999.
    • (1999) Advances in Neural Information Processing Systems 11.
    • Moore, A.1
  • 26
    • 0031061864 scopus 로고    scopus 로고
    • Parametric and non-parametric unsupervised cluster analysis
    • S. J. Roberts. Parametric and non-parametric unsupervised cluster analysis. Pattern Recog., 30:261–272, 1997.
    • (1997) Pattern Recog. , vol.30 , pp. 261-272
    • Roberts, S.J.1
  • 28
    • 0002333325 scopus 로고
    • Using kernel density estimates to investigate multimodality
    • B. Silverman. Using kernel density estimates to investigate multimodality. J. R. Statist. Soc. B, 43(1):97–99, 1981.
    • (1981) J. R. Statist. Soc. B , vol.43 , Issue.1 , pp. 97-99
    • Silverman, B.1
  • 31
    • 0034857150 scopus 로고    scopus 로고
    • Image segmentation by data driven markov chain monte carlo
    • Vancouver, Canada, July
    • Z. Tu, S. Zhu, and H. Shum. Image segmentation by data driven markov chain monte carlo. In Proceedings International Conference on Computer Vision, Vancouver, Canada, volume 2, pages 131–138, July 2001.
    • (2001) Proceedings International Conference on Computer Vision, , vol.2 , pp. 131-138
    • Tu, Z.1    Zhu, S.2    Shum, H.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.