메뉴 건너뛰기




Volumn 1, Issue 4, 2007, Pages 367-378

Support vector machine via nonlinear rescaling method

Author keywords

Convex optimization; Duality; Lagrange multipliers; Support vector machine

Indexed keywords

APPROXIMATION THEORY; CLASSIFICATION (OF INFORMATION); DATABASE SYSTEMS; LAGRANGE MULTIPLIERS; LEARNING ALGORITHMS; OPTIMIZATION; PROBLEM SOLVING;

EID: 34948819142     PISSN: 18624472     EISSN: 18624480     Source Type: Journal    
DOI: 10.1007/s11590-006-0033-2     Document Type: Article
Times cited : (7)

References (17)
  • 1
    • 0003408496 scopus 로고    scopus 로고
    • Department of Information and Computer Sciences, University of California, Irvine
    • Blake, C.L., Merz, C.J.: UCI Repository of machine learning databases. http://www.ics. uci.edu/~mlearn/MLRepository.html. Department of Information and Computer Sciences, University of California, Irvine (1998)
    • (1998) UCI Repository of Machine Learning Databases
    • Blake, C.L.1    Merz, C.J.2
  • 2
    • 0026966646 scopus 로고
    • A training algorithm for optimal margin classifiers
    • ACM, Pittsburg
    • Boser, B.E., Guyon, I., Vapnik, V.: A training algorithm for optimal margin classifiers. In: COLT, pp. 144-152. ACM, Pittsburg (1992)
    • (1992) COLT , pp. 144-152
    • Boser, B.E.1    Guyon, I.2    Vapnik, V.3
  • 3
    • 0002400882 scopus 로고    scopus 로고
    • Simplified support vector decision rules
    • San Fransisco
    • Burges, C.J.C.: Simplified support vector decision rules. In: ICML, San Fransisco, pp. 71-77 (1996)
    • (1996) ICML , pp. 71-77
    • Burges, C.J.C.1
  • 5
    • 34249753618 scopus 로고
    • Support-vector networks
    • Cortes C., Vapnik V. (1995) Support-vector networks. Mach. Learn. 20, 273-297
    • (1995) Mach. Learn. , vol.20 , pp. 273-297
    • Cortes, C.1    Vapnik, V.2
  • 7
    • 0028425543 scopus 로고
    • The convergence of a modified barrier method for convex programming
    • Jensen D., Polyak R. (1994) The convergence of a modified barrier method for convex programming. IBM J. Res. Dev. 38:307-321
    • (1994) IBM J. Res. Dev. , vol.38 , pp. 307-321
    • Jensen, D.1    Polyak, R.2
  • 8
    • 0042613507 scopus 로고    scopus 로고
    • The Newton modified barrier method for QP problems
    • Melman A., Polyak R. (1996) The Newton modified barrier method for QP problems. Ann. Oper. Res. 62, 465-519
    • (1996) Ann. Oper. Res. , vol.62 , pp. 465-519
    • Melman, A.1    Polyak, R.2
  • 11
    • 34249830808 scopus 로고
    • Modified barrier functions (theory and methods)
    • Polyak R. (1992) Modified barrier functions (theory and methods). Math. Program. 54, 177-222
    • (1992) Math. Program. , vol.54 , pp. 177-222
    • Polyak, R.1
  • 12
    • 4043111445 scopus 로고    scopus 로고
    • Nonlinear rescaling vs smoothing technique in convex optimization
    • Polyak R. (2002) Nonlinear rescaling vs smoothing technique in convex optimization. Math. Program. Ser. A 92, 197-235
    • (2002) Math. Program. Ser. A , vol.92 , pp. 197-235
    • Polyak, R.1
  • 13
    • 9744286945 scopus 로고    scopus 로고
    • Primal-dual nonlinear rescaling method for convex optimization
    • 1
    • Polyak R., Griva I. (2004) Primal-dual nonlinear rescaling method for convex optimization. J. Optim. Theory Appl. 122(1):111-156
    • (2004) J. Optim. Theory Appl. , vol.122 , pp. 111-156
    • Polyak, R.1    Griva, I.2
  • 14
    • 0041629347 scopus 로고    scopus 로고
    • Nonlinear rescaling and proximal-like methods in convex optimization
    • Polyak R., Teboulle M. (1997) Nonlinear rescaling and proximal-like methods in convex optimization. Math. Program. 76, 265-284
    • (1997) Math. Program. , vol.76 , pp. 265-284
    • Polyak, R.1    Teboulle, M.2
  • 17
    • 33646379851 scopus 로고    scopus 로고
    • A Direct Method for Building Sparse Kernel Learning Algorithms
    • Wu M., Scholkopf B., Bakir G. (2006) A Direct Method for Building Sparse Kernel Learning Algorithms. J. Mach. Learn. Res. 7, 603-624
    • (2006) J. Mach. Learn. Res. , vol.7 , pp. 603-624
    • Wu, M.1    Scholkopf, B.2    Bakir, G.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.