메뉴 건너뛰기




Volumn , Issue , 2006, Pages 24-29

Classification of normal, benign and malignant tissues using co-occurrence matrix and bayesian neural network in mammographic images

Author keywords

[No Author keywords available]

Indexed keywords

BAYESIAN NETWORKS; IMAGE ANALYSIS; MATRIX ALGEBRA; MEDICAL IMAGING; TISSUE;

EID: 34848908371     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/SBRN.2006.14     Document Type: Conference Paper
Times cited : (18)

References (23)
  • 1
    • 34848835601 scopus 로고    scopus 로고
    • A. C. S. (AMS). Learn about breast cancer, 2006. Available at http://www.cancer.org.
    • A. C. S. (AMS). Learn about breast cancer, 2006. Available at http://www.cancer.org.
  • 12
    • 77956890234 scopus 로고
    • Monte Carlo sampling methods using Markov chains and their applications
    • W. K. Hastings. Monte Carlo sampling methods using Markov chains and their applications. Biometrika, 1970.
    • (1970) Biometrika
    • Hastings, W.K.1
  • 14
    • 0034871408 scopus 로고    scopus 로고
    • Potential of computer-aided diagnosis to reduce variability in radiologists interpretations of mammograms depicting microcalcifications
    • Y. Jiang, R. M. Nishikawa, R. A. Schmidt, A. Y. Toledano, and K. Doi. Potential of computer-aided diagnosis to reduce variability in radiologists interpretations of mammograms depicting microcalcifications. Radiology, 220:787-794, 2001.
    • (2001) Radiology , vol.220 , pp. 787-794
    • Jiang, Y.1    Nishikawa, R.M.2    Schmidt, R.A.3    Toledano, A.Y.4    Doi, K.5
  • 15
    • 33749669571 scopus 로고    scopus 로고
    • Computer aided diagnosis in digital mammograms: Detection of microcalcifications by meta heuristic algorithms
    • K.Thangavel and M.Karnan. Computer aided diagnosis in digital mammograms: Detection of microcalcifications by meta heuristic algorithms. GVIP, 5, 2005.
    • (2005) GVIP , vol.5
    • Thangavel, K.1    Karnan, M.2
  • 17
    • 0002704818 scopus 로고
    • A practical Bayesian framework for backpropagation networks
    • D. J. C. Mackay. A practical Bayesian framework for backpropagation networks. Neural Computation, 4(3):448-472, 1992.
    • (1992) Neural Computation , vol.4 , Issue.3 , pp. 448-472
    • Mackay, D.J.C.1
  • 18
    • 34848916828 scopus 로고    scopus 로고
    • N. C. I. (NCI). Cancer stat fact sheets: Cancer of the breast, 2006. Available at http://seer.cancer.gov/statfacts/html/breast.html.
    • N. C. I. (NCI). Cancer stat fact sheets: Cancer of the breast, 2006. Available at http://seer.cancer.gov/statfacts/html/breast.html.
  • 20
    • 0001224911 scopus 로고    scopus 로고
    • Feedforward neural networks for nonparametric regression
    • D. Dey, P. Müller, and D. Sinha, editors, Springer-Verlag, New York
    • D. Rios Insua and P. Müller. Feedforward neural networks for nonparametric regression. In D. Dey, P. Müller, and D. Sinha, editors, Practical Nonparametric and Semiparametric Bayesian Statistics, pages 181-193. Springer-Verlag, New York, 1998.
    • (1998) Practical Nonparametric and Semiparametric Bayesian Statistics , pp. 181-193
    • Rios Insua, D.1    Müller, P.2
  • 21
    • 34848878755 scopus 로고    scopus 로고
    • D. J. Spiegelhalter, A. Thomas, N. Best, and D. Lunn. WinBUGS manual version 1.4. Technical report, MRC Biostatistics Unit, Institute of Public Health, Robinson Way, Cambridge, 2003.
    • D. J. Spiegelhalter, A. Thomas, N. Best, and D. Lunn. WinBUGS manual version 1.4. Technical report, MRC Biostatistics Unit, Institute of Public Health, Robinson Way, Cambridge, 2003.
  • 23
    • 17444397485 scopus 로고    scopus 로고
    • Neural vs. statistical classifier in conjunction with genetic algorithm based feature selection
    • P. Zhang, B. Verma, and K. Kumar. Neural vs. statistical classifier in conjunction with genetic algorithm based feature selection. Pattern Recognition Letters, 26:909-919, 2005.
    • (2005) Pattern Recognition Letters , vol.26 , pp. 909-919
    • Zhang, P.1    Verma, B.2    Kumar, K.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.