-
1
-
-
0035390239
-
High-radix montgomeiy modular exponentiation on reconfigurable hardware
-
T. Blum and C. Paar. High-radix montgomeiy modular exponentiation on reconfigurable hardware. IEEE Transaction on Computers, 50(7):759-764, 2001.
-
(2001)
IEEE Transaction on Computers
, vol.50
, Issue.7
, pp. 759-764
-
-
Blum, T.1
Paar, C.2
-
3
-
-
84949515158
-
Fast implemenation of public-key cryptography on a DSP TMS320C6201
-
Springer-Verlag
-
K. Itoh, M. Takenaka, N. Torii, S. Temma, and Y. Kurihara. Fast implemenation of public-key cryptography on a DSP TMS320C6201. In In Proceedings of the First Workshop on Cryptographic Hardware and Embedded Systems (CHES), Lecture Notes in Computer Science. Springer-Verlag, 1999.
-
(1999)
Proceedings of the First Workshop on Cryptographic Hardware and Embedded Systems (CHES), Lecture Notes in Computer Science
-
-
Itoh, K.1
Takenaka, M.2
Torii, N.3
Temma, S.4
Kurihara, Y.5
-
6
-
-
0027268812
-
High-radix modular multiplication for cryptosystems
-
E. E. Swartzlander, M. J. Irwin, and J. Jullien, editors, Windsor, Canada, IEEE Computer Society Press. Los Alamitos, CA
-
P. Komerup. High-radix modular multiplication for cryptosystems. In E. E. Swartzlander, M. J. Irwin, and J. Jullien, editors, Proceedings of the 11th IEEE Symposium on Computer Arithmetic, pages 277-283, Windsor, Canada, 1993. IEEE Computer Society Press. Los Alamitos, CA.
-
(1993)
Proceedings of the 11th IEEE Symposium on Computer Arithmetic
, pp. 277-283
-
-
Komerup, P.1
-
7
-
-
0028482946
-
A systolic, linear-array multiplier for a class of right-shift algorithms
-
P. Komerup. A systolic, linear-array multiplier for a class of right-shift algorithms. IEEE Transactions on Computers, 43(8):892-898, 1994.
-
(1994)
IEEE Transactions on Computers
, vol.43
, Issue.8
, pp. 892-898
-
-
Komerup, P.1
-
8
-
-
0003859414
-
-
Prentice-Hall Inc., Englewood Cliffs, New Jersey
-
S. Y. Kung. VLSI Array Processors. Prentice-Hall Inc., Englewood Cliffs, New Jersey, 1988.
-
(1988)
VLSI Array Processors
-
-
Kung, S.Y.1
-
9
-
-
84966243285
-
Modular multiplication without trial division
-
April
-
P. L. Montgomery. Modular multiplication without trial division. Mathematics of Computation, 44(170):519-521, April 1985.
-
(1985)
Mathematics of Computation
, vol.44
, Issue.170
, pp. 519-521
-
-
Montgomery, P.L.1
-
11
-
-
84946011400
-
e modulo n
-
Windsor, Canada, IEEE Computer Society Press, Los Alamitos, CA
-
e modulo n. In Proceedings of the 10th IEEE Symposium on Computer Arithmetic, pages 26-28, Windsor, Canada, 1991. IEEE Computer Society Press, Los Alamitos, CA.
-
(1991)
Proceedings of the 10th IEEE Symposium on Computer Arithmetic
, pp. 26-28
-
-
Qrup, H.1
Komerup, P.2
-
12
-
-
0017930809
-
A method for obtaining digital signatures and public-key cryptosystems
-
R. L. Rivest, A. Shamir, and L. M. Adelman, A method for obtaining digital signatures and public-key cryptosystems. Communications of the ACM, 21(2):120-126, 1978.
-
(1978)
Communications of the ACM
, vol.21
, Issue.2
, pp. 120-126
-
-
Rivest, R.L.1
Shamir, A.2
Adelman, L.M.3
-
13
-
-
0027188810
-
Fast implementations of RSA cryptography
-
E. E. Swartzlander, M. J, Irwin, and I. Jullien, editors, Windsor, Canada, IEEE Computer Society Press, Los Alamitos, CA
-
M. Shand and J. E. Vuillemin. Fast implementations of RSA cryptography. In E. E. Swartzlander, M. J, Irwin, and I. Jullien, editors, Proceedings of the 11th IEEE Symposium on Computer Arithmetic, pages 252-259, Windsor, Canada, 1993. IEEE Computer Society Press, Los Alamitos, CA.
-
(1993)
Proceedings of the 11th IEEE Symposium on Computer Arithmetic
, pp. 252-259
-
-
Shand, M.1
Vuillemin, J.E.2
-
14
-
-
84949759949
-
RSA cryptosystem design based on the Chinese remainder theorem
-
IEEE
-
C.-H. Wu, J.-H. Hong, and C.-W. Wu. RSA cryptosystem design based on the Chinese remainder theorem. In Design Automation Conference, 2001. Proceedings of the ASP-DAC 2001. Asia and South Pacific, pages 391-395. IEEE, 2001.
-
(2001)
Design Automation Conference, 2001. Proceedings of the ASP-DAC 2001. Asia and South Pacific
, pp. 391-395
-
-
Wu, C.-H.1
Hong, J.-H.2
Wu, C.-W.3
|