-
1
-
-
0002221136
-
Fast algorithms for mining association rules in large databases
-
R. Agrawal and R. Srikant. Fast algorithms for mining association rules in large databases. In VLDB, 1994.
-
(1994)
VLDB
-
-
Agrawal, R.1
Srikant, R.2
-
3
-
-
12244300524
-
-
S. Basu, M. Bilenko, and R. J. Mooney. A probabilistic framework for semi-supervised clustering. In KDD, 2004.
-
S. Basu, M. Bilenko, and R. J. Mooney. A probabilistic framework for semi-supervised clustering. In KDD, 2004.
-
-
-
-
4
-
-
12244296737
-
-
D. Chakrabarti, S. Papadimitriou, D. Modha, and C. Faloutsos. Fully automatic cross-associations. In KDD, 2004.
-
D. Chakrabarti, S. Papadimitriou, D. Modha, and C. Faloutsos. Fully automatic cross-associations. In KDD, 2004.
-
-
-
-
6
-
-
77952375075
-
-
I. S. Dhillon, S. Mallela, and D. S. Modha. Information-theoretic co-clustering. In KDD, 2003.
-
I. S. Dhillon, S. Mallela, and D. S. Modha. Information-theoretic co-clustering. In KDD, 2003.
-
-
-
-
7
-
-
0034824884
-
Concept decompositions for large sparse text data using clustering
-
I. S. Dhillon and D. S. Modha. Concept decompositions for large sparse text data using clustering. Mach. Learning, 42, 2001.
-
(2001)
Mach. Learning
, vol.42
-
-
Dhillon, I.S.1
Modha, D.S.2
-
9
-
-
0032091595
-
CURE: An efficient clustering algorithm for large databases
-
S. Guha, R. Rastogi, and K. Shim. CURE: an efficient clustering algorithm for large databases. In SIGMOD, 1998.
-
(1998)
SIGMOD
-
-
Guha, S.1
Rastogi, R.2
Shim, K.3
-
10
-
-
9144231916
-
Learning the k in k-means
-
G. Hamerly and C. Elkan. Learning the k in k-means. In NIPS, 2003.
-
(2003)
NIPS
-
-
Hamerly, G.1
Elkan, C.2
-
12
-
-
2442449952
-
Mining frequent patterns without candidate generation: A frequent-pattern tree approach
-
J. Han, J. Pei, Y. Yin, and R. Mao. Mining frequent patterns without candidate generation: A frequent-pattern tree approach. Data Min. Knowl. Discov., 8(1):53-87, 2004.
-
(2004)
Data Min. Knowl. Discov
, vol.8
, Issue.1
, pp. 53-87
-
-
Han, J.1
Pei, J.2
Yin, Y.3
Mao, R.4
-
13
-
-
0003684449
-
-
Springer
-
T. Hastie, R. Tibshirani, and J. Friedman. The Elements of Statistical Learning: Data Mining, Inference, and Prediction. Springer, 2001.
-
(2001)
The Elements of Statistical Learning: Data Mining, Inference, and Prediction
-
-
Hastie, T.1
Tibshirani, R.2
Friedman, J.3
-
14
-
-
34548596320
-
-
A. Hinneburg and D. A. Keim. An efficient approach to clustering in large multimedia databases with noise. In KDD, 1998.
-
A. Hinneburg and D. A. Keim. An efficient approach to clustering in large multimedia databases with noise. In KDD, 1998.
-
-
-
-
15
-
-
0038675380
-
-
Y. Huang, H. Xiong, S. Shekhar, and J. Pei. Mining confident co-location rules without a support threshold. In SAC, 2003.
-
Y. Huang, H. Xiong, S. Shekhar, and J. Pei. Mining confident co-location rules without a support threshold. In SAC, 2003.
-
-
-
-
16
-
-
0032686723
-
Chameleon: Hierarchical clustering using dynamic modeling
-
G. Karypis, E.-H. Han, and V. Kumar. Chameleon: Hierarchical clustering using dynamic modeling. IEEE Computer, 32(8), 1999.
-
(1999)
IEEE Computer
, vol.32
, Issue.8
-
-
Karypis, G.1
Han, E.-H.2
Kumar, V.3
-
17
-
-
34548563509
-
-
G. Karypis and V. Kumar. Multilevel algorithms for multi-constraint graph partitioning. In SC98, 1998.
-
G. Karypis and V. Kumar. Multilevel algorithms for multi-constraint graph partitioning. In SC98, 1998.
-
-
-
-
18
-
-
10644281769
-
-
E. Keogh, S. Lonardi, and C. A. Ratanamahatana. Towards parameter-free data mining. In KDD, 2004.
-
E. Keogh, S. Lonardi, and C. A. Ratanamahatana. Towards parameter-free data mining. In KDD, 2004.
-
-
-
-
19
-
-
1842545358
-
Approximation algorithms for classification problems with pairwise relationships: Metric labeling and Markov random fields
-
J. Kleinberg and E. Tardos. Approximation algorithms for classification problems with pairwise relationships: Metric labeling and Markov random fields. JACM, 49(5):616-639, 2002.
-
(2002)
JACM
, vol.49
, Issue.5
, pp. 616-639
-
-
Kleinberg, J.1
Tardos, E.2
-
20
-
-
34548565375
-
Rule discovery and probabilistic modeling for onomastic data
-
A. Leino, H. Mannila, and R. L. Pitkänen. Rule discovery and probabilistic modeling for onomastic data. In PKDD, 2003.
-
(2003)
PKDD
-
-
Leino, A.1
Mannila, H.2
Pitkänen, R.L.3
-
22
-
-
0041875229
-
On spectral clustering: Analysis and an algorithm
-
A. Y. Ng, M. I. Jordan, and Y. Weiss. On spectral clustering: Analysis and an algorithm. In NIPS, 2001.
-
(2001)
NIPS
-
-
Ng, A.Y.1
Jordan, M.I.2
Weiss, Y.3
-
23
-
-
0001820920
-
X-means: Extending K-means with efficient estimation of the number of clusters
-
D. Pelleg and A. Moore. X-means: Extending K-means with efficient estimation of the number of clusters. In ICML, pages 727-734, 2000.
-
(2000)
ICML
, pp. 727-734
-
-
Pelleg, D.1
Moore, A.2
-
24
-
-
84926736518
-
Some generalized order-disorder transformations
-
R. B. Potts. Some generalized order-disorder transformations. Proc. Camb. Phil. Soc., 48:106, 1952.
-
(1952)
Proc. Camb. Phil. Soc
, vol.48
, pp. 106
-
-
Potts, R.B.1
-
25
-
-
34548558388
-
An approach to relate the web communities through bipartite graphs
-
P. K. Reddy and M. Kitsuregawa. An approach to relate the web communities through bipartite graphs. In WISE, 2001.
-
(2001)
WISE
-
-
Reddy, P.K.1
Kitsuregawa, M.2
-
27
-
-
19544386787
-
Evaluating attraction in spatial point patterns with an application in the field of cultural history
-
M. Salmenkivi. Evaluating attraction in spatial point patterns with an application in the field of cultural history. In ICDM, 2004.
-
(2004)
ICDM
-
-
Salmenkivi, M.1
-
28
-
-
0023206186
-
Variable block-size image coding
-
D. J. Vaisey and A. Gersho. Variable block-size image coding. In ICASSP, 1987.
-
(1987)
ICASSP
-
-
Vaisey, D.J.1
Gersho, A.2
-
29
-
-
5044221833
-
Spatially coherent clustering with graph cuts
-
R. Zabih and V. Kolmogorov. Spatially coherent clustering with graph cuts. In CVPR, 2004.
-
(2004)
CVPR
-
-
Zabih, R.1
Kolmogorov, V.2
-
30
-
-
3543074169
-
K-harmonic means - a spatial clustering algorithm with boosting
-
B. Zhang, M. Hsu, and U. Dayal. K-harmonic means - a spatial clustering algorithm with boosting. In TSDM, 2000.
-
(2000)
TSDM
-
-
Zhang, B.1
Hsu, M.2
Dayal, U.3
-
31
-
-
0030157145
-
BIRCH: An efficient data clustering method for very large databases
-
T. Zhang, R. Ramakrishnan, and M. Livny. BIRCH: An efficient data clustering method for very large databases. In SIGMOD, 1996.
-
(1996)
SIGMOD
-
-
Zhang, T.1
Ramakrishnan, R.2
Livny, M.3
-
32
-
-
12244312165
-
-
X. Zhang, N. Mamoulis, D. W. Cheung, and Y. Shou. Fast mining of spatial collocations. In KDD, 2004.
-
X. Zhang, N. Mamoulis, D. W. Cheung, and Y. Shou. Fast mining of spatial collocations. In KDD, 2004.
-
-
-
|