메뉴 건너뛰기




Volumn 21, Issue 4, 2006, Pages 15-24

An advanced approach to forecasting tourism demand in Taiwan

Author keywords

Fuzzy time series; Neural networks; Structure breaks; Tourist numbers

Indexed keywords


EID: 34548528336     PISSN: 10548408     EISSN: None     Source Type: Journal    
DOI: 10.1300/J073v21n04_03     Document Type: Article
Times cited : (23)

References (29)
  • 1
    • 0026272314 scopus 로고
    • Tourist carrying capacity: A fuzzy approach
    • Canestrelli, E. & Costa, P. (1991). Tourist carrying capacity: A fuzzy approach, Annals of Tourism Research, 18: 295-311.
    • (1991) Annals of Tourism Research , vol.18 , pp. 295-311
    • Canestrelli, E.1    Costa, P.2
  • 2
    • 0001073047 scopus 로고    scopus 로고
    • Forecasting enrollments based on fuzzy time series
    • Chen, S.-M. (1996). Forecasting enrollments based on fuzzy time series. Fuzzy Sets and Systems, 81: 311-319.
    • (1996) Fuzzy Sets and Systems , vol.81 , pp. 311-319
    • Chen, S.-M.1
  • 4
    • 85036258669 scopus 로고
    • Distribution of the estimates for autoregressive time series with a unit root
    • Dickey, D.A., & Fuller, W.A. (1979). Distribution of the estimates for autoregressive time series with a unit root. Journal of the American Statistical Association, 74: 427-431.
    • (1979) Journal of the American Statistical Association , vol.74 , pp. 427-431
    • Dickey, D.A.1    Fuller, W.A.2
  • 5
    • 0042385066 scopus 로고    scopus 로고
    • Univariate versus multivariate time series forecasting: An application to international tourism demand
    • Du Preez, J., & Witt, S.F. (2003). Univariate versus multivariate time series forecasting: An application to international tourism demand. International Journal of Forecasting, 19: 435-451.
    • (2003) International Journal of Forecasting , vol.19 , pp. 435-451
    • Du Preez, J.1    Witt, S.F.2
  • 7
    • 0024866495 scopus 로고
    • On the approximate realization of continuous mappings by neural networks
    • Funahashi, K. (1989). On the approximate realization of continuous mappings by neural networks. Neural Networks, 2: 183-192.
    • (1989) Neural Networks , vol.2 , pp. 183-192
    • Funahashi, K.1
  • 9
    • 0027812765 scopus 로고
    • Some new results on neural network approximation
    • Hornik, K. (1993). Some new results on neural network approximation. Neural Networks, 6: 1069-1072.
    • (1993) Neural Networks , vol.6 , pp. 1069-1072
    • Hornik, K.1
  • 10
    • 0035502048 scopus 로고    scopus 로고
    • Heuristic models of fuzzy time series for forecasting
    • Huarng, K. (2001). Heuristic models of fuzzy time series for forecasting. Fuzzy Sets and Systems, 123 (3): 369-386.
    • (2001) Fuzzy Sets and Systems , vol.123 , Issue.3 , pp. 369-386
    • Huarng, K.1
  • 12
    • 0032202643 scopus 로고    scopus 로고
    • Handling forecasting problems using fuzzy time series
    • Hwang, J.R., Chen, S.-M., & Lee, C.-H. (1998). Handling forecasting problems using fuzzy time series. Fuzzy Sets and Systems, 100: 217-228.
    • (1998) Fuzzy Sets and Systems , vol.100 , pp. 217-228
    • Hwang, J.R.1    Chen, S.-M.2    Lee, C.-H.3
  • 13
    • 0013311467 scopus 로고    scopus 로고
    • Predicting mutual fund performance using artificial neural networks
    • Indro, D.C., Jiang, C.X., Patuwo, B.E., & Zhang, G.P. (1999). Predicting mutual fund performance using artificial neural networks. Omega Int. J. Manage. Sci., 27: 373-380.
    • (1999) Omega Int. J. Manage. Sci , vol.27 , pp. 373-380
    • Indro, D.C.1    Jiang, C.X.2    Patuwo, B.E.3    Zhang, G.P.4
  • 14
    • 34247480179 scopus 로고
    • Testing the null hypothesis of stationarity against the alternative of a unit root: How sure are we that economic time series have a unit root?
    • Kwiatkowski, D., Phillips, P.C.B., Schmidt, P., & Shin, Y. (1992). Testing the null hypothesis of stationarity against the alternative of a unit root: How sure are we that economic time series have a unit root? Journal of Econometrics, 54: 159-178.
    • (1992) Journal of Econometrics , vol.54 , pp. 159-178
    • Kwiatkowski, D.1    Phillips, P.C.B.2    Schmidt, P.3    Shin, Y.4
  • 15
    • 0034057701 scopus 로고    scopus 로고
    • Back-propagation learning in improving the accuracy neural network-based tourism demand forecasting
    • Law, R. (2000). Back-propagation learning in improving the accuracy neural network-based tourism demand forecasting. Tourism Management, 21: 331-340.
    • (2000) Tourism Management , vol.21 , pp. 331-340
    • Law, R.1
  • 16
    • 0032997601 scopus 로고    scopus 로고
    • A neural network model to forecast Japanese demand for travel to Hong Kong
    • Law, R. & Au, N. (1999). A neural network model to forecast Japanese demand for travel to Hong Kong. Tourism Management, 20: 89-97.
    • (1999) Tourism Management , vol.20 , pp. 89-97
    • Law, R.1    Au, N.2
  • 17
    • 0002378331 scopus 로고
    • Critical values for cointegration tests
    • Engle, R.F, & Granger, C.W.J, eds, Oxford University Press
    • MacKinnon, J.G. (1991). Critical values for cointegration tests. In Engle, R.F., & Granger, C.W.J. (eds.), Long Run Economic Relationships: Readings in Cointegration (pp. 267-276). Oxford University Press.
    • (1991) Long Run Economic Relationships: Readings in Cointegration , pp. 267-276
    • MacKinnon, J.G.1
  • 18
    • 77956888124 scopus 로고
    • Testing for a unit root in time series regression
    • Phillips, P. C. B., & Perron, P. (1988). Testing for a unit root in time series regression. Biometrika, 75: 335-346.
    • (1988) Biometrika , vol.75 , pp. 335-346
    • Phillips, P.C.B.1    Perron, P.2
  • 19
    • 0028387642 scopus 로고
    • Neural networks: Applications in industry, business and science
    • Rumelhart, B.D., & Lehr, M.A. (1994). Neural networks: Applications in industry, business and science. Communications of the ACM, 37 (3): 93-105.
    • (1994) Communications of the ACM , vol.37 , Issue.3 , pp. 93-105
    • Rumelhart, B.D.1    Lehr, M.A.2
  • 21
    • 38149147511 scopus 로고
    • Forecasting enrollments with fuzzy time series-Part 1
    • Song, Q., & Chissom, B.S. (1993a). Forecasting enrollments with fuzzy time series-Part 1. Fuzzy Sets and Systems, 54: 1-9.
    • (1993) Fuzzy Sets and Systems , vol.54 , pp. 1-9
    • Song, Q.1    Chissom, B.S.2
  • 23
    • 38149146997 scopus 로고
    • Forecasting enrollments with fuzzy time series-Part 2
    • Song, Q., & Chissom, B.S. (1994). Forecasting enrollments with fuzzy time series-Part 2. Fuzzy Sets and Systems, 62: 1-8.
    • (1994) Fuzzy Sets and Systems , vol.62 , pp. 1-8
    • Song, Q.1    Chissom, B.S.2
  • 24
    • 0028462006 scopus 로고
    • A comparison of fuzzy forecasting and Markov modeling
    • Sullivan, J., & Woodall, W.H. (1994). A comparison of fuzzy forecasting and Markov modeling. Fuzzy Sets and Systems, 64: 279-293.
    • (1994) Fuzzy Sets and Systems , vol.64 , pp. 279-293
    • Sullivan, J.1    Woodall, W.H.2
  • 25
    • 2342587536 scopus 로고    scopus 로고
    • Predicting tourism demand using fuzzy time series and hybrid grey theory
    • Wang, C.-H. (2004). Predicting tourism demand using fuzzy time series and hybrid grey theory. Tourism Management, 25: 367-374.
    • (2004) Tourism Management , vol.25 , pp. 367-374
    • Wang, C.-H.1
  • 27
    • 0028387642 scopus 로고
    • Neural networks: Applications in industry, business and science
    • Widrow, B., Rumelhart, D.E., Lehr, M.A. (1994) Neural networks: applications in industry, business and science. Communications of the ACM, 37(3): 93-105.
    • (1994) Communications of the ACM , vol.37 , Issue.3 , pp. 93-105
    • Widrow, B.1    Rumelhart, D.E.2    Lehr, M.A.3
  • 29
    • 0003123930 scopus 로고    scopus 로고
    • Forecasting with artificial neural networks: The state of the art
    • Zhang, G., Patuwo, B.E., & Hu, M.Y. (1998). Forecasting with artificial neural networks: The state of the art. International Journal of Forecasting, 14: 35-62.
    • (1998) International Journal of Forecasting , vol.14 , pp. 35-62
    • Zhang, G.1    Patuwo, B.E.2    Hu, M.Y.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.