-
2
-
-
0000180153
-
-
For reviews on early oxaziridine work, see
-
For reviews on early oxaziridine work, see: H. Krimm Chem. Ber. 1958 91 1057-1068.
-
(1958)
Chem. Ber.
, vol.91
, pp. 1057-1068
-
-
Krimm, H.1
-
27
-
-
0034741521
-
-
A. Simion C. Simion T. Kanda S. Nagashima Y. Mitoma T. Yamada K. Mimura M. Tashiro J. Chem. Soc., Perkin Trans. 1 2001 2071-2078.
-
(2001)
J. Chem. Soc., Perkin Trans. 1
, pp. 2071-2078
-
-
Simion, A.1
Simion, C.2
Kanda, T.3
Nagashima, S.4
Mitoma, Y.5
Yamada, T.6
Mimura, K.7
Tashiro, M.8
-
28
-
-
85032779029
-
-
4 (instead of 10 mol%) was found to be adequate. Further experimental details are described in the ESI
-
4 (instead of 10 mol%) was found to be adequate. Further experimental details are described in the ESI.
-
-
-
-
29
-
-
85032779271
-
-
1H NMR peak integration 1,3,5-trimethoxybenzene as internal standard
-
1H NMR peak integration 1,3,5-trimethoxybenzene as internal standard.
-
-
-
-
30
-
-
85032771663
-
-
DFT calculations were carried out using the hybrid B3PW91 functional. The basis set was the ECP-adapted SDDALL with a set of polarization functions for Rh and Cl and the all-electron 6–31G(d, p) for all other atoms. Geometry optimizations were carried out without any geometrical constraints. The analytical calculation of frequencies was performed in order to classify each stationary point as a minimum or a transition state. Each transition state was relaxed towards reactants and products using the vibrational data to confirm its nature. All energies in the text are potential energies. The zero-point, thermal and entropy corrections were evaluated to compute enthalpies and Gibbs free energies, which are given in the ESI. It was verified that the free energy profiles and the potential energy profiles are similar. The references for the level of calculations are given in the ESI
-
DFT calculations were carried out using the hybrid B3PW91 functional. The basis set was the ECP-adapted SDDALL with a set of polarization functions for Rh and Cl and the all-electron 6–31G(d, p) for all other atoms. Geometry optimizations were carried out without any geometrical constraints. The analytical calculation of frequencies was performed in order to classify each stationary point as a minimum or a transition state. Each transition state was relaxed towards reactants and products using the vibrational data to confirm its nature. All energies in the text are potential energies. The zero-point, thermal and entropy corrections were evaluated to compute enthalpies and Gibbs free energies, which are given in the ESI. It was verified that the free energy profiles and the potential energy profiles are similar. The references for the level of calculations are given in the ESI.
-
-
-
-
31
-
-
11244282931
-
-
Gaussian, Inc., Wallingford, CT
-
M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery Jr., T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. G. Johnson, W. Chen, M. W. Wong, C. Gonzalez and J. A. Pople, GAUSSIAN 03 (Revision D.01), Gaussian, Inc., Wallingford, CT, 2004.
-
(2004)
GAUSSIAN 03 (Revision D.01)
-
-
Frisch, M.J.1
Trucks, G.W.2
Schlegel, H.B.3
Scuseria, G.E.4
Robb, M.A.5
Cheeseman, J.R.6
Montgomery, J.A.7
Vreven, T.8
Kudin, K.N.9
Burant, J.C.10
Millam, J.M.11
Iyengar, S.S.12
Tomasi, J.13
Barone, V.14
Mennucci, B.15
Cossi, M.16
Scalmani, G.17
Rega, N.18
Petersson, G.A.19
Nakatsuji, H.20
Hada, M.21
Ehara, M.22
Toyota, K.23
Fukuda, R.24
Hasegawa, J.25
Ishida, M.26
Nakajima, T.27
Honda, Y.28
Kitao, O.29
Nakai, H.30
Klene, M.31
Li, X.32
Knox, J.E.33
Hratchian, H.P.34
Cross, J.B.35
Bakken, V.36
Adamo, C.37
Jaramillo, J.38
Gomperts, R.39
Stratmann, R.E.40
Yazyev, O.41
Austin, A.J.42
Cammi, R.43
Pomelli, C.44
Ochterski, J.45
Ayala, P.Y.46
Morokuma, K.47
Voth, G.A.48
Salvador, P.49
Dannenberg, J.J.50
Zakrzewski, V.G.51
Dapprich, S.52
Daniels, A.D.53
Strain, M.C.54
Farkas, O.55
Malick, D.K.56
Rabuck, A.D.57
Raghavachari, K.58
Foresman, J.B.59
Ortiz, J.V.60
Cui, Q.61
Baboul, A.G.62
Clifford, S.63
Cioslowski, J.64
Stefanov, B.B.65
Liu, G.66
Liashenko, A.67
Piskorz, P.68
Komaromi, I.69
Martin, R.L.70
Fox, D.J.71
Keith, T.72
Al-Laham, M.A.73
Peng, C.Y.74
Nanayakkara, A.75
Challacombe, M.76
Gill, P.M.W.77
Johnson, B.G.78
Chen, W.79
Wong, M.W.80
Gonzalez, C.81
Pople, J.A.82
more..
|