메뉴 건너뛰기




Volumn 70, Issue 16-18, 2007, Pages 2744-2757

A robust and flexible model of hierarchical self-organizing maps for non-stationary environments

Author keywords

Hierarchical self organizing maps; Robust and flexible architectures; Time dependent non stationary environments; Topological drift

Indexed keywords

ALGORITHMS; MATHEMATICAL MODELS; ROBUSTNESS (CONTROL SYSTEMS); TOPOLOGY; TREES (MATHEMATICS);

EID: 34548152792     PISSN: 09252312     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.neucom.2006.04.011     Document Type: Article
Times cited : (14)

References (24)
  • 1
    • 0025725905 scopus 로고
    • Instance-based learning algorithms
    • Aha D., Kibler D., and Albert M.K. Instance-based learning algorithms. Mach. Learn. 6 (1991) 37-66
    • (1991) Mach. Learn. , vol.6 , pp. 37-66
    • Aha, D.1    Kibler, D.2    Albert, M.K.3
  • 2
    • 0034186912 scopus 로고    scopus 로고
    • Dynamic self-organizing maps with controlled growth for knowledge discovery
    • Alahakoon D., Halgamuge S., and Srinivasan B. Dynamic self-organizing maps with controlled growth for knowledge discovery. IEEE Trans. Neural Networks 11 3 (2000) 601-614
    • (2000) IEEE Trans. Neural Networks , vol.11 , Issue.3 , pp. 601-614
    • Alahakoon, D.1    Halgamuge, S.2    Srinivasan, B.3
  • 3
    • 25144443432 scopus 로고    scopus 로고
    • H. Allende, S. Moreno, C. Rogel, R. Salas, Robust self-organizing maps, CIARP. Lecture Notes in Computer Science, vol. 3287, 2004, pp. 179-186.
  • 5
    • 33745423052 scopus 로고    scopus 로고
    • Sequential learning in distributed neural networks without catastrophic forgetting: a single and realistic self-refreshing memory can do it
    • Ans B. Sequential learning in distributed neural networks without catastrophic forgetting: a single and realistic self-refreshing memory can do it. Neural Inf. Process. Lett. Rev. 4 2 (2004) 27-37
    • (2004) Neural Inf. Process. Lett. Rev. , vol.4 , Issue.2 , pp. 27-37
    • Ans, B.1
  • 6
    • 0021776661 scopus 로고
    • A massively parallel architecture for a self-organizing neural pattern recognition machine
    • Carpenter G., and Grossberg S. A massively parallel architecture for a self-organizing neural pattern recognition machine. Comput. Vision, Graphics Image Process. 37 (1987) 54-225
    • (1987) Comput. Vision, Graphics Image Process. , vol.37 , pp. 54-225
    • Carpenter, G.1    Grossberg, S.2
  • 7
    • 0032923221 scopus 로고    scopus 로고
    • Catastrophic forgetting in connectionist networks
    • French R. Catastrophic forgetting in connectionist networks. Trends Cognitive Sci. 3 (1999) 128-135
    • (1999) Trends Cognitive Sci. , vol.3 , pp. 128-135
    • French, R.1
  • 8
    • 0028748949 scopus 로고
    • Growing cell structures-a self-organizing network for unsupervised and supervised learning
    • Fritzke B. Growing cell structures-a self-organizing network for unsupervised and supervised learning. Neural Networks 7 9 (1994) 1441-1460
    • (1994) Neural Networks , vol.7 , Issue.9 , pp. 1441-1460
    • Fritzke, B.1
  • 13
    • 84883713774 scopus 로고    scopus 로고
    • R. Klinkenberg, Learning drifting concepts: example selection vs. example weighting, in: Intelligent Data Analysis (IDA), Special issue on incremental Learning Systems Capable of Dealing with Concept Drift, vol. 8(3), 2004, pp. 281-300.
  • 14
    • 34548146953 scopus 로고    scopus 로고
    • T. Kohonen, Self-Organizing Maps, in: Springer Series in Information Sciences, third extended ed., vol. 30, Springer, Berlin, Heidelberg, 2001.
  • 15
    • 35048891979 scopus 로고    scopus 로고
    • L. Kuncheva, Classifier ensembles for changing environments, MCS2004, Lecture Notes in Computer Science, vol. 3077, 2004, pp. 1-15.
  • 16
    • 77957064197 scopus 로고
    • Catastrophic interference in connectionist networks: the sequential learning problem
    • McCloskey M., and Cohen N. Catastrophic interference in connectionist networks: the sequential learning problem. Psychol. Learn. Motivat. 24 (1989) 109-164
    • (1989) Psychol. Learn. Motivat. , vol.24 , pp. 109-164
    • McCloskey, M.1    Cohen, N.2
  • 17
    • 25144503836 scopus 로고    scopus 로고
    • S. Moreno, H. Allende, C. Rogel, R. Salas, Robust growing hierarchical self organizing map, IWANN 2005, Lecture Notes in Computer Science, vol. 3512, 2005, pp. 341-348.
  • 18
    • 0036859375 scopus 로고    scopus 로고
    • The growing hierarchical self-organizing map: Exploratory analysis of high-dimensional data
    • Rauber A., Merkl D., and Dittenbach M. The growing hierarchical self-organizing map: Exploratory analysis of high-dimensional data. IEEE Trans. Neural Networks 13 6 (2002) 1331-1341
    • (2002) IEEE Trans. Neural Networks , vol.13 , Issue.6 , pp. 1331-1341
    • Rauber, A.1    Merkl, D.2    Dittenbach, M.3
  • 19
    • 33745397799 scopus 로고    scopus 로고
    • R. Salas, H. Allende, S. Moreno, C. Saavedra, Flexible architecture of self-organizing maps for changing environments, CIARP 2005. Lecture Notes in Computer Science, vol. 3773, 2005, pp. 642-653.
  • 20
    • 0010012318 scopus 로고
    • Incremental learning from noisy data
    • Schlimmer J.C., and Granger R.H. Incremental learning from noisy data. Mach. Learn. 1 3 (1986) 317-354
    • (1986) Mach. Learn. , vol.1 , Issue.3 , pp. 317-354
    • Schlimmer, J.C.1    Granger, R.H.2
  • 21
    • 34548153188 scopus 로고    scopus 로고
    • U. Seiffert, L. Jain (Eds.), Self-Organizing Neural Networks: Recent Advances and Applications, Studies in Fuzziness and Soft Computing, vol. 78, Springer, Berlin, 2002.
  • 22
    • 34548150113 scopus 로고    scopus 로고
    • A. Tsymbal, The problem of concept drift: definitions and related work, Technical Report TCD-CS-2004-15, Trinity College Dublin, 2004.
  • 23
    • 0030126609 scopus 로고    scopus 로고
    • Learning in the presence of concept drift and hidden context
    • Widmer G., and Kubat M. Learning in the presence of concept drift and hidden context. Mach. Learn. 23 (1996) 69-101
    • (1996) Mach. Learn. , vol.23 , pp. 69-101
    • Widmer, G.1    Kubat, M.2
  • 24
    • 1542491373 scopus 로고
    • Combining robustness and flexibility in learning drifting concepts
    • Widmer G. Combining robustness and flexibility in learning drifting concepts. European Conference on Artificial Intelligence (1994) 468-472
    • (1994) European Conference on Artificial Intelligence , pp. 468-472
    • Widmer, G.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.