-
2
-
-
0002460150
-
The ALARM monitoring system: A case study with two probabilistic inference techniques for belief networks,
-
I. A. Beinlich, H. J. Suermondt, R. M. Chavez, and G. F. Cooper. The ALARM monitoring system: A case study with two probabilistic inference techniques for belief networks,. Proceedings of the Second European Conference on Artificial Intelligence in Medical Care, Springer-Verlag, Berlin., pages 247-256, 1989.
-
(1989)
Proceedings of the Second European Conference on Artificial Intelligence in Medical Care, Springer-Verlag, Berlin
, pp. 247-256
-
-
Beinlich, I.A.1
Suermondt, H.J.2
Chavez, R.M.3
Cooper, G.F.4
-
4
-
-
85017343247
-
Probabilistic network construction using the minimum description length principle
-
R. R. Bouckaert. Probabilistic network construction using the minimum description length principle. Lecture Notes in Computer Science, 747:41-48, 1993.
-
(1993)
Lecture Notes in Computer Science
, vol.747
, pp. 41-48
-
-
Bouckaert, R.R.1
-
8
-
-
33646107783
-
Large-sample learning of Bayesian networks is NP-Hard
-
D. Chickering, D. Heckerman, and C. Meek. Large-sample learning of Bayesian networks is NP-Hard. J. Mach. Learn. Res., 5:1287-1330, 2004.
-
(2004)
J. Mach. Learn. Res
, vol.5
, pp. 1287-1330
-
-
Chickering, D.1
Heckerman, D.2
Meek, C.3
-
9
-
-
84933530882
-
Approximating discrete probability distributions with dependence trees
-
C. Chow and C. Liu. Approximating discrete probability distributions with dependence trees. IEEE transactions on Information Theory, 14:462-467, 1968.
-
(1968)
IEEE transactions on Information Theory
, vol.14
, pp. 462-467
-
-
Chow, C.1
Liu, C.2
-
10
-
-
34249832377
-
A Bayesian method for the induction of probabilistic networks from data
-
G. Cooper and E. Herskovits. A Bayesian method for the induction of probabilistic networks from data. Machine Learning, 9:309-347, 1992.
-
(1992)
Machine Learning
, vol.9
, pp. 309-347
-
-
Cooper, G.1
Herskovits, E.2
-
11
-
-
0003687180
-
-
Springer-Verlag New York, Inc, Secaucus, NJ, USA
-
R. G. Cowell, S. L. Lauritzen, A. P. David, and D. J. Spiegelhalter. Probabilistic Networks and Expert Systems. Springer-Verlag New York, Inc., Secaucus, NJ, USA, 1999.
-
(1999)
Probabilistic Networks and Expert Systems
-
-
Cowell, R.G.1
Lauritzen, S.L.2
David, A.P.3
Spiegelhalter, D.J.4
-
12
-
-
0031185530
-
On the use of independence relationships for learning simplified belief networks
-
L. de Campos and J. Huete. On the use of independence relationships for learning simplified belief networks. International Journal of Intelligent Systems, 12:495-522, 1997.
-
(1997)
International Journal of Intelligent Systems
, vol.12
, pp. 495-522
-
-
de Campos, L.1
Huete, J.2
-
14
-
-
14344263350
-
Learning Bayesian network structure from massive datasets: The "sparse candidate" algorithm
-
N. Friedman, I. Nachman, and D. Peer. Learning Bayesian network structure from massive datasets: The "sparse candidate" algorithm. In Uncertainty in Artificial Intelligence, pages 206-215, 1999.
-
(1999)
Uncertainty in Artificial Intelligence
, pp. 206-215
-
-
Friedman, N.1
Nachman, I.2
Peer, D.3
-
15
-
-
34548084696
-
Structure learning of Bayesian networks from databases by genetic algorithms-application to time series prediction in finance
-
J. Habrant. Structure learning of Bayesian networks from databases by genetic algorithms-application to time series prediction in finance. In ICEIS, pages 225-231, 1999.
-
(1999)
ICEIS
, pp. 225-231
-
-
Habrant, J.1
-
16
-
-
9944259646
-
Learning Bayesian networks: The combination of knowledge and statistical data
-
D. Heckerman, D. Geiger, and D. Chickering. Learning Bayesian networks: The combination of knowledge and statistical data. In KDD Workshop, pages 85-96, 1994.
-
(1994)
KDD Workshop
, pp. 85-96
-
-
Heckerman, D.1
Geiger, D.2
Chickering, D.3
-
18
-
-
0030192667
-
Learning Bayesian network structures by searching for the best ordering with genetic algorithms
-
P. Larrañaga, C. Kuijpers, and R. Murga. Learning Bayesian network structures by searching for the best ordering with genetic algorithms. IEEE Transactions on System, Man and Cybernetics, 26:487-493, 1996.
-
(1996)
IEEE Transactions on System, Man and Cybernetics
, vol.26
, pp. 487-493
-
-
Larrañaga, P.1
Kuijpers, C.2
Murga, R.3
-
20
-
-
0001006209
-
Local computations with probabilities on graphical structures and their application to expert systems
-
S. L. Lauritzen and D. J. Spiegelhalter. Local computations with probabilities on graphical structures and their application to expert systems. Journal of the Royal Statistical Society, 50(2):157-224, 1988.
-
(1988)
Journal of the Royal Statistical Society
, vol.50
, Issue.2
, pp. 157-224
-
-
Lauritzen, S.L.1
Spiegelhalter, D.J.2
-
22
-
-
1642370471
-
The random selection and manipulation of legally encoded Bayesian networks in genetic algorithms
-
A. J. Novobilski. The random selection and manipulation of legally encoded Bayesian networks in genetic algorithms. In IC-AI, pages 438-443, 2003.
-
(2003)
IC-AI
, pp. 438-443
-
-
Novobilski, A.J.1
-
24
-
-
0001457227
-
Counting labeled acyclic digraphs
-
Frank Harary, editor, Academic Press, New York
-
R. Robinson. Counting labeled acyclic digraphs. New Directions in the Theory of Graphs, In Frank Harary, editor . Academic Press, New York, pages 239-273, 1973.
-
(1973)
New Directions in the Theory of Graphs
, pp. 239-273
-
-
Robinson, R.1
-
25
-
-
0003338515
-
Causation, Prediction and Search
-
P. Spirtes, C. Glymour, and R. Scheines. Causation, Prediction and Search. Lecture Notes in Statistics, New York: Springer Verlag, 81, 1993.
-
(1993)
Lecture Notes in Statistics, New York: Springer Verlag
, vol.81
-
-
Spirtes, P.1
Glymour, C.2
Scheines, R.3
-
27
-
-
35248848492
-
Building a GA from design principles for learning Bayesian networks
-
S. van Dijk, D. Thierens, and L. C. van der Gaag. Building a GA from design principles for learning Bayesian networks. In GECCO, pages 886-897, 2003.
-
(2003)
GECCO
, pp. 886-897
-
-
van Dijk, S.1
Thierens, D.2
van der Gaag, L.C.3
-
28
-
-
0003389370
-
The GENITOR algorithm and selection pressure: Why rank-based allocation of reproductive trials is best
-
J. D. Schaffer, editor, San Mateo, CA, Morgan Kaufman
-
D. Whitley. The GENITOR algorithm and selection pressure: Why rank-based allocation of reproductive trials is best. In J. D. Schaffer, editor, Proceedings of the Third International Conference on Genetic Algorithms, San Mateo, CA, 1989. Morgan Kaufman.
-
(1989)
Proceedings of the Third International Conference on Genetic Algorithms
-
-
Whitley, D.1
-
29
-
-
1842792773
-
A hybrid data mining approach to discover Bayesian networks using evolutionary programming
-
San Francisco, CA, USA, Morgan Kaufmann Publishers Inc
-
M. L. Wong, S. Y. Lee, and K. S. Leung. A hybrid data mining approach to discover Bayesian networks using evolutionary programming. In GECCO '02: Proceedings of the Genetic and Evolutionary Computation Conference, pages 214-222, San Francisco, CA, USA, 2002. Morgan Kaufmann Publishers Inc.
-
(2002)
GECCO '02: Proceedings of the Genetic and Evolutionary Computation Conference
, pp. 214-222
-
-
Wong, M.L.1
Lee, S.Y.2
Leung, K.S.3
-
30
-
-
22944492706
-
Parameterising Bayesian networks
-
O. Woodberry, A. Nicholson, K. Korb, and C. Pollino. Parameterising Bayesian networks. In Australian Conference on Artificial Intelligence, pages 1101-1107, 2004.
-
(2004)
Australian Conference on Artificial Intelligence
, pp. 1101-1107
-
-
Woodberry, O.1
Nicholson, A.2
Korb, K.3
Pollino, C.4
|