메뉴 건너뛰기




Volumn , Issue , 2007, Pages 1264-1271

A chain-model genetic algorithm for Bayesian network structure learning

Author keywords

Bayesian networks; Genetic algorithms; Greedy search

Indexed keywords

BAYESIAN NETWORKS; COMPUTATIONAL COMPLEXITY; GENETIC ALGORITHMS; HEURISTIC ALGORITHMS; MATHEMATICAL MODELS; UNCERTAIN SYSTEMS;

EID: 34548087879     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1145/1276958.1277200     Document Type: Conference Paper
Times cited : (50)

References (30)
  • 4
    • 85017343247 scopus 로고
    • Probabilistic network construction using the minimum description length principle
    • R. R. Bouckaert. Probabilistic network construction using the minimum description length principle. Lecture Notes in Computer Science, 747:41-48, 1993.
    • (1993) Lecture Notes in Computer Science , vol.747 , pp. 41-48
    • Bouckaert, R.R.1
  • 8
    • 33646107783 scopus 로고    scopus 로고
    • Large-sample learning of Bayesian networks is NP-Hard
    • D. Chickering, D. Heckerman, and C. Meek. Large-sample learning of Bayesian networks is NP-Hard. J. Mach. Learn. Res., 5:1287-1330, 2004.
    • (2004) J. Mach. Learn. Res , vol.5 , pp. 1287-1330
    • Chickering, D.1    Heckerman, D.2    Meek, C.3
  • 9
    • 84933530882 scopus 로고
    • Approximating discrete probability distributions with dependence trees
    • C. Chow and C. Liu. Approximating discrete probability distributions with dependence trees. IEEE transactions on Information Theory, 14:462-467, 1968.
    • (1968) IEEE transactions on Information Theory , vol.14 , pp. 462-467
    • Chow, C.1    Liu, C.2
  • 10
    • 34249832377 scopus 로고
    • A Bayesian method for the induction of probabilistic networks from data
    • G. Cooper and E. Herskovits. A Bayesian method for the induction of probabilistic networks from data. Machine Learning, 9:309-347, 1992.
    • (1992) Machine Learning , vol.9 , pp. 309-347
    • Cooper, G.1    Herskovits, E.2
  • 12
    • 0031185530 scopus 로고    scopus 로고
    • On the use of independence relationships for learning simplified belief networks
    • L. de Campos and J. Huete. On the use of independence relationships for learning simplified belief networks. International Journal of Intelligent Systems, 12:495-522, 1997.
    • (1997) International Journal of Intelligent Systems , vol.12 , pp. 495-522
    • de Campos, L.1    Huete, J.2
  • 14
    • 14344263350 scopus 로고    scopus 로고
    • Learning Bayesian network structure from massive datasets: The "sparse candidate" algorithm
    • N. Friedman, I. Nachman, and D. Peer. Learning Bayesian network structure from massive datasets: The "sparse candidate" algorithm. In Uncertainty in Artificial Intelligence, pages 206-215, 1999.
    • (1999) Uncertainty in Artificial Intelligence , pp. 206-215
    • Friedman, N.1    Nachman, I.2    Peer, D.3
  • 15
    • 34548084696 scopus 로고    scopus 로고
    • Structure learning of Bayesian networks from databases by genetic algorithms-application to time series prediction in finance
    • J. Habrant. Structure learning of Bayesian networks from databases by genetic algorithms-application to time series prediction in finance. In ICEIS, pages 225-231, 1999.
    • (1999) ICEIS , pp. 225-231
    • Habrant, J.1
  • 16
    • 9944259646 scopus 로고
    • Learning Bayesian networks: The combination of knowledge and statistical data
    • D. Heckerman, D. Geiger, and D. Chickering. Learning Bayesian networks: The combination of knowledge and statistical data. In KDD Workshop, pages 85-96, 1994.
    • (1994) KDD Workshop , pp. 85-96
    • Heckerman, D.1    Geiger, D.2    Chickering, D.3
  • 18
    • 0030192667 scopus 로고    scopus 로고
    • Learning Bayesian network structures by searching for the best ordering with genetic algorithms
    • P. Larrañaga, C. Kuijpers, and R. Murga. Learning Bayesian network structures by searching for the best ordering with genetic algorithms. IEEE Transactions on System, Man and Cybernetics, 26:487-493, 1996.
    • (1996) IEEE Transactions on System, Man and Cybernetics , vol.26 , pp. 487-493
    • Larrañaga, P.1    Kuijpers, C.2    Murga, R.3
  • 20
    • 0001006209 scopus 로고
    • Local computations with probabilities on graphical structures and their application to expert systems
    • S. L. Lauritzen and D. J. Spiegelhalter. Local computations with probabilities on graphical structures and their application to expert systems. Journal of the Royal Statistical Society, 50(2):157-224, 1988.
    • (1988) Journal of the Royal Statistical Society , vol.50 , Issue.2 , pp. 157-224
    • Lauritzen, S.L.1    Spiegelhalter, D.J.2
  • 22
    • 1642370471 scopus 로고    scopus 로고
    • The random selection and manipulation of legally encoded Bayesian networks in genetic algorithms
    • A. J. Novobilski. The random selection and manipulation of legally encoded Bayesian networks in genetic algorithms. In IC-AI, pages 438-443, 2003.
    • (2003) IC-AI , pp. 438-443
    • Novobilski, A.J.1
  • 24
    • 0001457227 scopus 로고
    • Counting labeled acyclic digraphs
    • Frank Harary, editor, Academic Press, New York
    • R. Robinson. Counting labeled acyclic digraphs. New Directions in the Theory of Graphs, In Frank Harary, editor . Academic Press, New York, pages 239-273, 1973.
    • (1973) New Directions in the Theory of Graphs , pp. 239-273
    • Robinson, R.1
  • 27
    • 35248848492 scopus 로고    scopus 로고
    • Building a GA from design principles for learning Bayesian networks
    • S. van Dijk, D. Thierens, and L. C. van der Gaag. Building a GA from design principles for learning Bayesian networks. In GECCO, pages 886-897, 2003.
    • (2003) GECCO , pp. 886-897
    • van Dijk, S.1    Thierens, D.2    van der Gaag, L.C.3
  • 28
    • 0003389370 scopus 로고
    • The GENITOR algorithm and selection pressure: Why rank-based allocation of reproductive trials is best
    • J. D. Schaffer, editor, San Mateo, CA, Morgan Kaufman
    • D. Whitley. The GENITOR algorithm and selection pressure: Why rank-based allocation of reproductive trials is best. In J. D. Schaffer, editor, Proceedings of the Third International Conference on Genetic Algorithms, San Mateo, CA, 1989. Morgan Kaufman.
    • (1989) Proceedings of the Third International Conference on Genetic Algorithms
    • Whitley, D.1
  • 29
    • 1842792773 scopus 로고    scopus 로고
    • A hybrid data mining approach to discover Bayesian networks using evolutionary programming
    • San Francisco, CA, USA, Morgan Kaufmann Publishers Inc
    • M. L. Wong, S. Y. Lee, and K. S. Leung. A hybrid data mining approach to discover Bayesian networks using evolutionary programming. In GECCO '02: Proceedings of the Genetic and Evolutionary Computation Conference, pages 214-222, San Francisco, CA, USA, 2002. Morgan Kaufmann Publishers Inc.
    • (2002) GECCO '02: Proceedings of the Genetic and Evolutionary Computation Conference , pp. 214-222
    • Wong, M.L.1    Lee, S.Y.2    Leung, K.S.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.