메뉴 건너뛰기




Volumn , Issue , 2007, Pages 1280-1287

Learning building block structure from crossover failure

Author keywords

Building blocks; Crossover disruption; Genetic algorithms; Linkage discovery; Smart operators

Indexed keywords

BINARY SEQUENCES; FAILURE ANALYSIS; GENETIC ALGORITHMS; PROBLEM SOLVING;

EID: 34548059231     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1145/1276958.1277202     Document Type: Conference Paper
Times cited : (4)

References (21)
  • 1
    • 27144440331 scopus 로고    scopus 로고
    • A quantitative approach for validating the building-block hypothesis
    • IEEE CEC, September
    • C. Aporntewan and P. Chongstitvatana. A quantitative approach for validating the building-block hypothesis. In 2005 IEEE Congress on Evolutionary Computation, pages 1403-1409. IEEE CEC 2005, September 2005.
    • (2005) 2005 IEEE Congress on Evolutionary Computation , pp. 1403-1409
    • Aporntewan, C.1    Chongstitvatana, P.2
  • 2
    • 78049265488 scopus 로고    scopus 로고
    • MIMIC: Finding optima by estimating probability densities
    • M. C. Mozer, M. I. Jordan, and T. Petsche, editors, The MIT Press
    • J. S. de Bonet, C. L. Isbell, Jr., and P. Viola. MIMIC: Finding optima by estimating probability densities. In M. C. Mozer, M. I. Jordan, and T. Petsche, editors, Advances in Neural Information Processing Systems, volume 9, pages 424-430. The MIT Press, 1997.
    • (1997) Advances in Neural Information Processing Systems , vol.9 , pp. 424-430
    • de Bonet, J.S.1    Isbell Jr., C.L.2    Viola, P.3
  • 3
    • 0002379542 scopus 로고
    • Relative building-block fitness and the building-block hypothesis
    • L. D. Whitley, editor, Morgan Kaufmann, San Mateo, CA
    • S. Forrest and M. Mitchell. Relative building-block fitness and the building-block hypothesis. In L. D. Whitley, editor, Foundations of Genetic Algorithms 2, pages 109-126. Morgan Kaufmann, San Mateo, CA, 1993.
    • (1993) Foundations of Genetic Algorithms 2 , pp. 109-126
    • Forrest, S.1    Mitchell, M.2
  • 5
    • 0000904077 scopus 로고
    • Messy genetic algorithms: Motivation, analysis, and first results
    • D. E. Goldberg, B. Korb, and K. Deb. Messy genetic algorithms: Motivation, analysis, and first results. Complex Systems, 3(5):493-530, 1989.
    • (1989) Complex Systems , vol.3 , Issue.5 , pp. 493-530
    • Goldberg, D.E.1    Korb, B.2    Deb, K.3
  • 7
    • 0003738581 scopus 로고    scopus 로고
    • Linkage learning via probabilistic modeling in the ECGA
    • 99010, IlliGAL,University of Illinois at Urbana-Champaign
    • G. Harik. Linkage learning via probabilistic modeling in the ECGA. Technical Report IlliGAL Report No. 99010, IlliGAL,University of Illinois at Urbana-Champaign, 1999.
    • (1999) Technical Report IlliGAL Report No
    • Harik, G.1
  • 8
    • 0033318859 scopus 로고    scopus 로고
    • The compact genetic algorithm
    • November
    • G. R. Harik, F. G. Lobo, and D. E. Goldberg. The compact genetic algorithm. IEEE-EC, 3(4):287-297, November 1999.
    • (1999) IEEE-EC , vol.3 , Issue.4 , pp. 287-297
    • Harik, G.R.1    Lobo, F.G.2    Goldberg, D.E.3
  • 11
    • 2142762712 scopus 로고    scopus 로고
    • A hierarchy machine: Learning to optimize from nature and humans
    • M. P. Lobo and D. E. Goldberg. A hierarchy machine: learning to optimize from nature and humans. Complexity, 8(5):36-45, 1999.
    • (1999) Complexity , vol.8 , Issue.5 , pp. 36-45
    • Lobo, M.P.1    Goldberg, D.E.2
  • 12
    • 0033884705 scopus 로고    scopus 로고
    • LEARNABLE EVOLUTION MODEL: Evolutionary processes guided by machine learning
    • R. S. Michalski. LEARNABLE EVOLUTION MODEL: Evolutionary processes guided by machine learning. Machine Learning, 38(1-2):9-40, 2000.
    • (2000) Machine Learning , vol.38 , Issue.1-2 , pp. 9-40
    • Michalski, R.S.1
  • 13
    • 34548083176 scopus 로고    scopus 로고
    • M. Mitchell, S. Forrest, and J. H. Holland. The royal road for genetic algorithms: Fitness landscapes and GA performance. In F. J. Varela and P. Bourgine, editors, Towards a Practice of Autonomous Systems: Proceedings of the First European Conference on Artificial Life, 1991, pages 245-254, Paris, 11-13 1992. A Bradford book, The MIT Press.
    • M. Mitchell, S. Forrest, and J. H. Holland. The royal road for genetic algorithms: Fitness landscapes and GA performance. In F. J. Varela and P. Bourgine, editors, Towards a Practice of Autonomous Systems: Proceedings of the First European Conference on Artificial Life, 1991, pages 245-254, Paris, 11-13 1992. A Bradford book, The MIT Press.
  • 15
    • 0011842830 scopus 로고    scopus 로고
    • Escaping hierarchical traps with competent genetic algorithms
    • L. Spector, E. D. Goodman, A. Wu, W. B. Langdon, H.-M. Voigt, M. Gen, S. Sen, M. Dorigo, S. Pezeshk, M. H. Garzon, and E. Burke, editors, San Francisco, California, USA, July, Morgan Kaufmann
    • M. Pelikan and D. E. Goldberg. Escaping hierarchical traps with competent genetic algorithms. In L. Spector, E. D. Goodman, A. Wu, W. B. Langdon, H.-M. Voigt, M. Gen, S. Sen, M. Dorigo, S. Pezeshk, M. H. Garzon, and E. Burke, editors, Proceedings of the Genetic and Evolutionary Computation Conference (GECCO-2001), pages 511-518, San Francisco, California, USA, July 2001. Morgan Kaufmann.
    • (2001) Proceedings of the Genetic and Evolutionary Computation Conference (GECCO-2001) , pp. 511-518
    • Pelikan, M.1    Goldberg, D.E.2
  • 16
    • 0001171707 scopus 로고    scopus 로고
    • BOA: The Bayesian optimization algorithm
    • W. Banzhaf, J. Daida, A. E. Eiben, M. H. Garzon, V. Honavar, M. Jakiela, and R. E. Smith, editors, Orlando, FL, July, Morgan Kaufmann Publishers, San Fransisco, CA
    • M. Pelikan, D. E. Goldberg, and E. Cantú-Paz. BOA: The Bayesian optimization algorithm. In W. Banzhaf, J. Daida, A. E. Eiben, M. H. Garzon, V. Honavar, M. Jakiela, and R. E. Smith, editors, Proceedings of the Genetic and Evolutionary Computation Conference GECCO-99, volume I, pages 525-532, Orlando, FL, July 1999. Morgan Kaufmann Publishers, San Fransisco, CA.
    • (1999) Proceedings of the Genetic and Evolutionary Computation Conference GECCO-99 , vol.1 , pp. 525-532
    • Pelikan, M.1    Goldberg, D.E.2    Cantú-Paz, E.3
  • 18
    • 84958962163 scopus 로고
    • Controlling crossover through inductive learning
    • Y. Davidor, H.-P. Schwefel, and R. Männer, editors, Berlin, Springer
    • M. Sebag and M. Schoenauer. Controlling crossover through inductive learning. In Y. Davidor, H.-P. Schwefel, and R. Männer, editors, Parallel Problem Solving from Nature - PPSN III, pages 209-218, Berlin, 1994. Springer.
    • (1994) Parallel Problem Solving from Nature - PPSN III , pp. 209-218
    • Sebag, M.1    Schoenauer, M.2
  • 19
    • 34548074259 scopus 로고    scopus 로고
    • D. Thierens and D. E. Goldberg. Mixing in genetic algorithms. In Proceedings of the Fifth International Conference on Genetic Algorithms, pages 38-45. ICGA93', June 1993.
    • D. Thierens and D. E. Goldberg. Mixing in genetic algorithms. In Proceedings of the Fifth International Conference on Genetic Algorithms, pages 38-45. ICGA93', June 1993.


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.