-
1
-
-
0000500817
-
Interactions between learning and evolution
-
C. G. Langton, C. Taylor, J. D. Farmer, & S. Rasmussen (Eds), Addison-Wesley
-
Ackley, D. & Littman, M. (1992). Interactions between learning and evolution, In C. G. Langton, C. Taylor, J. D. Farmer, & S. Rasmussen (Eds), Artificial life II. Addison-Wesley.
-
(1992)
Artificial Life II
-
-
Ackley, D.1
Littman, M.2
-
2
-
-
85172413460
-
Learning first order logic rules with a genetic algorithm
-
Montreal, Canada: AAAI Press
-
Augier, S., Venturini, G., & Kodratoff, Y. (1995). Learning first order logic rules with a genetic algorithm. Proceedings of the 1st International Conference on Knowledge Discovery and Data Mining (pp. 21-26). Montreal, Canada: AAAI Press.
-
(1995)
Proceedings of the 1st International Conference on Knowledge Discovery and Data Mining
, pp. 21-26
-
-
Augier, S.1
Venturini, G.2
Kodratoff, Y.3
-
4
-
-
0003479517
-
-
San Francisco, CA: Morgan Kaufman Publishers, Inc.
-
Banzhaf, W., Nordin P., Keller R. E., & Francone, F. D. (1998). Genetic programming: An introduction, San Francisco, CA: Morgan Kaufman Publishers, Inc.
-
(1998)
Genetic Programming: An Introduction
-
-
Banzhaf, W.1
Nordin, P.2
Keller, R.E.3
Francone, F.D.4
-
5
-
-
0001410750
-
A new factor in evolution
-
Baldwin, J. M. (1896). A new factor in evolution. American naturalist (Vol. 30) (pp. 441-451, 536-553).
-
(1896)
American Naturalist
, vol.30
, pp. 441-451
-
-
Baldwin, J.M.1
-
6
-
-
0342672088
-
Data-driven constructive induction: A methodology and its applications
-
special issue on feature transformation and subset selection. Huan Liu & Hiroshi Motoda (Eds.), March-April
-
Bloedorn, E. & Michalski, R. S. (1998). Data-driven constructive induction: A methodology and its applications, IEEE Intelligent Systems, special issue on feature transformation and subset selection. Huan Liu & Hiroshi Motoda (Eds.), March-April.
-
(1998)
IEEE Intelligent Systems
-
-
Bloedorn, E.1
Michalski, R.S.2
-
7
-
-
61349151558
-
Design and experiments with LEM2 implementation of the Learnable Evolution Model
-
(to appear). George Mason University
-
Cervone, G. & Michalski, R. S. (to appear). Design and experiments with LEM2 implementation of the Learnable Evolution Model, Reports of The Machine Learning and Inference Laboratory, George Mason University.
-
Reports of the Machine Learning and Inference Laboratory
-
-
Cervone, G.1
Michalski, R.S.2
-
10
-
-
33751575522
-
Comparing the learnable evolution model with genetic algorithms in the area of digital filter design
-
George Mason University, MLI99-5
-
Coletti, M., Lash, T., Mandsager, C. Michalski, R. S., & Moustafa, R. (1999). Comparing the learnable evolution model with genetic algorithms in the area of digital filter design, Reports of The Machine Learning and Inference Laboratory, George Mason University, MLI99-5.
-
(1999)
Reports of the Machine Learning and Inference Laboratory
-
-
Coletti, M.1
Lash, T.2
Mandsager, C.3
Michalski, R.S.4
Moustafa, R.5
-
12
-
-
0742294003
-
CAM-BRAIN: The evolutionary engineering of a billion neuron artificial brain by 2001 which grows/evolve at electronic speeds inside a cellular automata machine (CAM)
-
Towards evolvable hardware Springer-Verlag
-
de Garis, Hugo. (1996). CAM-BRAIN: The evolutionary engineering of a billion neuron artificial brain by 2001 which grows/evolve at electronic speeds inside a cellular automata machine (CAM). Lecture notes in computer science, Vol. 1062. Towards evolvable hardware (pp 76-98). Springer-Verlag.
-
(1996)
Lecture Notes in Computer Science
, vol.1062
, pp. 76-98
-
-
De Garis, H.1
-
13
-
-
0343106380
-
Building an Artificial Brain Using an FPGA Based CAM-Brain Machine
-
(to appear). special issue on Artificial life and robotics, artificial brain, brain computing and brainware, North Holland
-
de Garis, H., Korkin, M., Gers, F., Nawa, E., & Hough, M. (to appear). Building an Artificial Brain Using an FPGA Based CAM-Brain Machine, Applied Mathematics and Computation Journal (special issue on Artificial life and robotics, artificial brain, brain computing and brainware, North Holland.
-
Applied Mathematics and Computation Journal
-
-
De Garis, H.1
Korkin, M.2
Gers, F.3
Nawa, E.4
Hough, M.5
-
15
-
-
0027696338
-
Using genetic algorithms for concept learning
-
De Jong, K. A., Spears, W. M., & Gordon, F. D. (1993). Using genetic algorithms for concept learning, Machine Learning, 13, 161-188.
-
(1993)
Machine Learning
, vol.13
, pp. 161-188
-
-
De Jong, K.A.1
Spears, W.M.2
Gordon, F.D.3
-
17
-
-
0031361611
-
Machine-learning research: Four current directions
-
Dietterich, T. G. (1997). Machine-learning research: four current directions, AI Magazine, 18(4).
-
(1997)
AI Magazine
, vol.18
, Issue.4
-
-
Dietterich, T.G.1
-
19
-
-
0343106326
-
AQPLUS: An adaptive random search method for selecting a best set of attributes from a large collection of candidates
-
Department of Computer Science, University of Illinois, Urbana
-
Forsburg, S. (1976). AQPLUS: An adaptive random search method for selecting a best set of attributes from a large collection of candidates, Internal Technical Report, Department of Computer Science, University of Illinois, Urbana.
-
(1976)
Internal Technical Report
-
-
Forsburg, S.1
-
20
-
-
0000662737
-
Search-intensive concept induction
-
Giordana A. & Neri, F. (1995). Search-intensive concept induction. Evolutionary Computation, 3(4), 375-416.
-
(1995)
Evolutionary Computation
, vol.3
, Issue.4
, pp. 375-416
-
-
Giordana, A.1
Neri, F.2
-
22
-
-
0000440954
-
Lamarckian learning in multi-agent environment
-
R. Belew & L. Booker (Eds.). San Mateo, GA: Morgan Kaufmann
-
Grefenstette, J. (1991). Lamarckian learning in multi-agent environment. In R. Belew & L. Booker (Eds.). Proceedings of the Fourth International Conference on Genetic Algorithms, San Mateo, GA: Morgan Kaufmann (pp. 303-310).
-
(1991)
Proceedings of the Fourth International Conference on Genetic Algorithms
, pp. 303-310
-
-
Grefenstette, J.1
-
23
-
-
0027696043
-
Competition-based induction of decision models from examples
-
Greene D. P. & Smith, S. F. (1993). Competition-based induction of decision models from examples. Machine Learning, 13, 229-257.
-
(1993)
Machine Learning
, vol.13
, pp. 229-257
-
-
Greene, D.P.1
Smith, S.F.2
-
26
-
-
0000211184
-
How learning can guide evolution
-
Hinton, G. E. & Nowlan, S. J. (1987). How learning can guide evolution. Complex Systems, 1, 495-502.
-
(1987)
Complex Systems
, vol.1
, pp. 495-502
-
-
Hinton, G.E.1
Nowlan, S.J.2
-
28
-
-
0027696178
-
A knowledge-intensive genetic algorithm for supervised learning
-
Janikow, C. Z. (1993). A knowledge-intensive genetic algorithm for supervised learning. Machine Learning, 13, 189-228.
-
(1993)
Machine Learning
, vol.13
, pp. 189-228
-
-
Janikow, C.Z.1
-
29
-
-
55749094149
-
Learning from inconsistent and noisy data: The AQ18 approach
-
11th International Symposium, ISMIS'99, Warsaw, Poland, Spring
-
Kaufman, K. & Michalski, R. S. (1999). Learning from inconsistent and noisy data: the AQ18 approach, Foundations of Intelligent Systems, 11th International Symposium, ISMIS'99, Warsaw, Poland, Spring.
-
(1999)
Foundations of Intelligent Systems
-
-
Kaufman, K.1
Michalski, R.S.2
-
34
-
-
0003312474
-
On the quasi-minimal solution of the general covering problem
-
Proceedings of the V International Symposium on Information Processing (FCIP 69), Yugoslavia, Bled
-
Michalski, R. S. (1969). On the quasi-minimal solution of the general covering problem, Proceedings of the V International Symposium on Information Processing (FCIP 69), Yugoslavia, Bled (Vol. A3) Switching Circuits, (pp. 125-128).
-
(1969)
Switching Circuits
, vol.A3
, pp. 125-128
-
-
Michalski, R.S.1
-
35
-
-
26644463335
-
A planar geometrical model for representing multi-dimensional discrete spaces and multiple-valued logic functions
-
University of Illinois at Champaign-Urbana.
-
Michalski, R. S. (1978). A planar geometrical model for representing multi-dimensional discrete spaces and multiple-valued logic functions. Reports of the Department of Computer Science, No. 897, University of Illinois at Champaign-Urbana.
-
(1978)
Reports of the Department of Computer Science, No. 897
, vol.897
-
-
Michalski, R.S.1
-
37
-
-
0000942050
-
A theory and methodology of inductive learning
-
Michalski, R. S. (1983). A theory and methodology of inductive learning, Artificial Intelligence, 20(2) 111-161.
-
(1983)
Artificial Intelligence
, vol.20
, Issue.2
, pp. 111-161
-
-
Michalski, R.S.1
-
38
-
-
0003262526
-
Inferential theory of learning: Developing foundations for multistrategy learning
-
R. S. Michalski & G. Tecuci (Eds.), San Mateo, CA, Morgan Kaufmann
-
Michalski, R. S. (1994). Inferential theory of learning: developing foundations for multistrategy learning, InR. S. Michalski & G. Tecuci (Eds.), Machine learning: a multistrategy approach (Vol. IV) San Mateo, CA, Morgan Kaufmann.
-
(1994)
Machine Learning: A Multistrategy Approach
, vol.4
-
-
Michalski, R.S.1
-
40
-
-
0005107221
-
Natural induction: Theory, methodology and its application to machine learning and data mining
-
(to appear). George Mason University
-
Michalski, R. S. (to appear). Natural induction: theory, methodology and its application to machine learning and data mining. Reports of the Machine Learning and Inference Laboratory, George Mason University.
-
Reports of the Machine Learning and Inference Laboratory
-
-
Michalski, R.S.1
-
44
-
-
0003915394
-
The AQ15 inductive learning system: An overview and experiments
-
No. 86-20, UIUCDCS-R-86-1260, Department of Computer Science, University of Illinois, Urbana
-
Michalski, R. S., Mozetic, I., Hong, J., & Lavrac, N. (1986). The AQ15 inductive learning system: an overview and experiments. Reports of the Intelligent Systems Group, No. 86-20, UIUCDCS-R-86-1260, Department of Computer Science, University of Illinois, Urbana.
-
(1986)
Reports of the Intelligent Systems Group
-
-
Michalski, R.S.1
Mozetic, I.2
Hong, J.3
Lavrac, N.4
-
45
-
-
0343977975
-
Initial experiments with the LEM1 learnable evolution model: An application to function optimization and evolvable hardware
-
George Mason University
-
Michalski, R. S. & Zhang, Q. (1999). Initial experiments with the LEM1 learnable evolution model: an application to function optimization and evolvable hardware. Reports of the Machine Learning and Inference Laboratory, George Mason University.
-
(1999)
Reports of the Machine Learning and Inference Laboratory
-
-
Michalski, R.S.1
Zhang, Q.2
-
47
-
-
0031235612
-
Does machine learning really work
-
Mitchell, T. M. (1997). Does machine learning really work. AI Magazine, 78(3).
-
(1997)
AI Magazine
, vol.78
, Issue.3
-
-
Mitchell, T.M.1
-
49
-
-
84958962163
-
Controlling crossover through inductive learning
-
Y. Davidor, H. P. Schwefel & R. Manner (Eds.), LNVS Springer-Verlag
-
Sebag, M. & Schoenauer, M. (1994). Controlling crossover through inductive learning In Y. Davidor, H. P. Schwefel & R. Manner (Eds.), Proceedings of the 3rd Conference on Parallel Problem Solving from Nature, LNVS (Vol. 866) (pp. 209-218). Springer-Verlag.
-
(1994)
Proceedings of the 3rd Conference on Parallel Problem Solving from Nature
, vol.866
, pp. 209-218
-
-
Sebag, M.1
Schoenauer, M.2
-
50
-
-
84955604217
-
Inductive Learning of multation step-size in evolutionary paramter optimization
-
Indianapolis
-
Sebag, M., Schoenauer M., & Ravise, C. (1997a). Inductive Learning of multation step-size in evolutionary paramter optimization. Proceedings of the 6th Annual Conference on Evolutionary Programming, Indianapolis. (pp. 247-261). LNCS (Vol. 1213).
-
(1997)
Proceedings of the 6th Annual Conference on Evolutionary Programming
, vol.1213
, pp. 247-261
-
-
Sebag, M.1
Schoenauer, M.2
Ravise, C.3
-
51
-
-
0041982423
-
Toward civilized evolution: Developing inhibitions
-
Sebag, M., Shoenauer, M., & Ravise, C. (1997b). Toward civilized evolution: developing inhibitions, Proceedings of the 7th International Conference on Genetic Algorithms (pp. 291-298).
-
(1997)
Proceedings of the 7th International Conference on Genetic Algorithms
, pp. 291-298
-
-
Sebag, M.1
Shoenauer, M.2
Ravise, C.3
-
52
-
-
0000865580
-
Cost-sensitive classification: Empirical evaluation of a hybrid genetic decision tree induction algorithm
-
Turney, P. D. (1995). Cost-sensitive classification: empirical evaluation of a hybrid genetic decision tree induction algorithm. Journal of Artificial Intelligence Research, 2, 369-409.
-
(1995)
Journal of Artificial Intelligence Research
, vol.2
, pp. 369-409
-
-
Turney, P.D.1
-
55
-
-
0343977965
-
Inductive learning system AQlSc: The method and user's guide
-
MLI95-4, George Mason University, Fairfax, VA
-
Wnek, J., Kaufman, K., Bloedorn, E., & Michalski, R. S. (1995). Inductive learning system AQlSc: the method and user's guide, Reports of the Machine Learning and Inference Laboratory, MLI95-4, George Mason University, Fairfax, VA.
-
(1995)
Reports of the Machine Learning and Inference Laboratory
-
-
Wnek, J.1
Kaufman, K.2
Bloedorn, E.3
Michalski, R.S.4
-
56
-
-
0028406563
-
Nonlinear parameter estimation via the genetic algorithm
-
Yao, L. & Sethares, W. (1994). Nonlinear parameter estimation via the genetic algorithm. IEEE Transactions on Signal Processing, 42(4), 927-935.
-
(1994)
IEEE Transactions on Signal Processing
, vol.42
, Issue.4
, pp. 927-935
-
-
Yao, L.1
Sethares, W.2
-
57
-
-
0343106173
-
Knowledge visualizer: A software system for visualizing data, patterns and their relationships
-
MLI 97-14, George Mason University, Fairfax, VA
-
Zhang, Q. (1997). Knowledge visualizer: a software system for visualizing data, patterns and their relationships. Reports of the Machine Learning and Inference Laboratory, MLI 97-14, George Mason University, Fairfax, VA.
-
(1997)
Reports of the Machine Learning and Inference Laboratory
-
-
Zhang, Q.1
|