-
1
-
-
21544455020
-
-
JAPIAU 0021-8979 10.1063/1.341700
-
J. K. Furdyna, J. Appl. Phys. JAPIAU 0021-8979 10.1063/1.341700 64, R29 (1988).
-
(1988)
J. Appl. Phys.
, vol.64
, pp. 29
-
-
Furdyna, J.K.1
-
2
-
-
33751116771
-
-
PHRVAO 0031-899X 10.1103/PhysRev.81.440
-
C. Zener, Phys. Rev. PHRVAO 0031-899X 10.1103/PhysRev.81.440 81, 440 (1950);
-
(1950)
Phys. Rev.
, vol.81
, pp. 440
-
-
Zener, C.1
-
3
-
-
36149011918
-
-
PHRVAO 0031-899X 10.1103/PhysRev.96.99
-
M. A. Ruderman and C. Kittel, Phys. Rev. PHRVAO 0031-899X 10.1103/PhysRev.96.99 96, 99 (1954).
-
(1954)
Phys. Rev.
, vol.96
, pp. 99
-
-
Ruderman, M.A.1
Kittel, C.2
-
4
-
-
18244377771
-
-
SCIEAS 0036-8075 10.1126/science.1066348
-
Y. D. Park, A. T. Hanbicki, S. C. Erwin, C. S. Hellberg, J. M. Sullivan, J. E. Mattson, T. F. Ambrose, A. Wilson, G. Spanos, and B. T. Jonker, Science SCIEAS 0036-8075 10.1126/science.1066348 295, 651 (2002);
-
(2002)
Science
, vol.295
, pp. 651
-
-
Park, Y.D.1
Hanbicki, A.T.2
Erwin, S.C.3
Hellberg, C.S.4
Sullivan, J.M.5
Mattson, J.E.6
Ambrose, T.F.7
Wilson, A.8
Spanos, G.9
Jonker, B.T.10
-
5
-
-
0034700461
-
-
NATUAS 0028-0836 10.1038/35050040
-
H. Ohno, D. Chiba, F. Matsukura, T. Omiya, E. Abe, T. Dietl, Y. Ohno, and K. Ohtani, Nature (London) NATUAS 0028-0836 10.1038/35050040 408, 944 (2000).
-
(2000)
Nature (London)
, vol.408
, pp. 944
-
-
Ohno, H.1
Chiba, D.2
Matsukura, F.3
Omiya, T.4
Abe, E.5
Dietl, T.6
Ohno, Y.7
Ohtani, K.8
-
6
-
-
0001623167
-
-
PRBMDO 0163-1829 10.1103/PhysRevB.31.6579
-
J. Warnock and P. A. Wolff, Phys. Rev. B PRBMDO 0163-1829 10.1103/PhysRevB.31.6579 31, 6579 (1985).
-
(1985)
Phys. Rev. B
, vol.31
, pp. 6579
-
-
Warnock, J.1
Wolff, P.A.2
-
7
-
-
3643120476
-
-
PRLTAO 0031-9007 10.1103/PhysRevLett.73.2252
-
H. Drexler, D. Leonard, W. Hansen, J. P. Kotthaus, and P. M. Petroff, Phys. Rev. Lett. PRLTAO 0031-9007 10.1103/PhysRevLett.73.2252 73, 2252 (1994);
-
(1994)
Phys. Rev. Lett.
, vol.73
, pp. 2252
-
-
Drexler, H.1
Leonard, D.2
Hansen, W.3
Kotthaus, J.P.4
Petroff, P.M.5
-
8
-
-
0000039719
-
-
APPLAB 0003-6951 10.1063/1.123015
-
R. J. Luyken, A. Lorke, A. O. Govorov, J. P. Kotthaus, G. Medeiros-Ribeiro, and P. M. Petroff, Appl. Phys. Lett. APPLAB 0003-6951 10.1063/1.123015 74, 2486 (1999);
-
(1999)
Appl. Phys. Lett.
, vol.74
, pp. 2486
-
-
Luyken, R.J.1
Lorke, A.2
Govorov, A.O.3
Kotthaus, J.P.4
Medeiros-Ribeiro, G.5
Petroff, P.M.6
-
9
-
-
0037881868
-
-
PRBMDO 0163-1829 10.1103/PhysRevB.67.125318
-
A. I. Yakimov, A. V. Dvurechenskii, A. I. Nikiforov, V. V. Ulyanov, A. G. Milekhin, A. O. Govorov, S. Schulze, and D. R. T. Zahn, Phys. Rev. B PRBMDO 0163-1829 10.1103/PhysRevB.67.125318 67, 125318 (2003).
-
(2003)
Phys. Rev. B
, vol.67
, pp. 125318
-
-
Yakimov, A.I.1
Dvurechenskii, A.V.2
Nikiforov, A.I.3
Ulyanov, V.V.4
Milekhin, A.G.5
Govorov, A.O.6
Schulze, S.7
Zahn, D.R.T.8
-
10
-
-
4544344418
-
-
PRBMDO 0163-1829 10.1103/PhysRevB.68.195313
-
P. S. Dorozhkin, A V. Chernenko, V. D. Kulakovskii, A. S. Brichkin, A. A. Maksimov, H. Schoemig, G. Bacher, A. Forchel, S. Lee, M. Dobrowolska, and J. K. Furdyna, Phys. Rev. B PRBMDO 0163-1829 10.1103/PhysRevB.68.195313 68, 195313 (2003);
-
(2003)
Phys. Rev. B
, vol.68
, pp. 195313
-
-
Dorozhkin, P.S.1
Chernenko, A.V.2
Kulakovskii, V.D.3
Brichkin, A.S.4
Maksimov, A.A.5
Schoemig, H.6
Bacher, G.7
Forchel, A.8
Lee, S.9
Dobrowolska, M.10
Furdyna, J.K.11
-
11
-
-
2542463228
-
-
APPLAB 0003-6951 10.1063/1.1723694
-
S. Mackowskii, T. Gurung, T. A. Nguyen, H. E. Jackson, L. M. Smith, G. Karczewski, and J. Kossut, Appl. Phys. Lett. APPLAB 0003-6951 10.1063/1.1723694 84, 3337 (2004);
-
(2004)
Appl. Phys. Lett.
, vol.84
, pp. 3337
-
-
MacKowskii, S.1
Gurung, T.2
Nguyen, T.A.3
Jackson, H.E.4
Smith, L.M.5
Karczewski, G.6
Kossut, J.7
-
12
-
-
33745794918
-
-
PRLTAO 0031-9007 10.1103/PhysRevLett.97.017202
-
C. Gould, A. Slobodskyy, D. Supp, T. Slobodskyy, P. Grabs, P. Hawrylak, F. Qu, G. Schmidt, and L. W. Molenkamp, Phys. Rev. Lett. PRLTAO 0031-9007 10.1103/PhysRevLett.97.017202 97, 017202 (2006);
-
(2006)
Phys. Rev. Lett.
, vol.97
, pp. 017202
-
-
Gould, C.1
Slobodskyy, A.2
Supp, D.3
Slobodskyy, T.4
Grabs, P.5
Hawrylak, P.6
Qu, F.7
Schmidt, G.8
Molenkamp, L.W.9
-
13
-
-
19744367657
-
-
PRLTAO 0031-9007 10.1103/PhysRevLett.93.207403
-
L. Besombes, Y. Leger, L. Maingault, D. Ferrand, H. Mariette, and J. Cibert, Phys. Rev. Lett. PRLTAO 0031-9007 10.1103/PhysRevLett.93.207403 93, 207403 (2004).
-
(2004)
Phys. Rev. Lett.
, vol.93
, pp. 207403
-
-
Besombes, L.1
Leger, Y.2
Maingault, L.3
Ferrand, D.4
Mariette, H.5
Cibert, J.6
-
15
-
-
19644374512
-
-
PRLTAO 0031-9007 10.1103/PhysRevLett.93.117201
-
J. Fernandez-Rossier and L. Brey, Phys. Rev. Lett. PRLTAO 0031-9007 10.1103/PhysRevLett.93.117201 93, 117201 (2004);
-
(2004)
Phys. Rev. Lett.
, vol.93
, pp. 117201
-
-
Fernandez-Rossier, J.1
Brey, L.2
-
16
-
-
33144459976
-
-
PRBMDO 0163-1829 10.1103/PhysRevB.73.045301
-
J. Fernandez-Rossier, Phys. Rev. B PRBMDO 0163-1829 10.1103/PhysRevB.73. 045301 73, 045301 (2006).
-
(2006)
Phys. Rev. B
, vol.73
, pp. 045301
-
-
Fernandez-Rossier, J.1
-
17
-
-
33646374659
-
-
PRLTAO 0031-9007 10.1103/PhysRevLett.96.157201
-
Fanyao Qu and P. Hawrylak, Phys. Rev. Lett. PRLTAO 0031-9007 10.1103/PhysRevLett.96.157201 96, 157201 (2006);
-
(2006)
Phys. Rev. Lett.
, vol.96
, pp. 157201
-
-
Qu, F.1
Hawrylak, P.2
-
18
-
-
28944445196
-
-
PRLTAO 0031-9007 10.1103/PhysRevLett.95.217206
-
Fanyao Qu and P. Hawrylak, Phys. Rev. Lett. PRLTAO 0031-9007 10.1103/PhysRevLett.95.217206 95, 217206 (2005).
-
(2005)
Phys. Rev. Lett.
, vol.95
, pp. 217206
-
-
Qu, F.1
Hawrylak, P.2
-
19
-
-
33644958619
-
-
PRBMDO 0163-1829 10.1103/PhysRevB.72.075359
-
A. O. Govorov, Phys. Rev. B PRBMDO 0163-1829 10.1103/PhysRevB.72.075359 72, 075359 (2005);
-
(2005)
Phys. Rev. B
, vol.72
, pp. 075359
-
-
Govorov, A.O.1
-
20
-
-
42749102017
-
-
PRBMDO 0163-1829 10.1103/PhysRevB.70.035321
-
A. O. Govorov, Phys. Rev. B PRBMDO 0163-1829 10.1103/PhysRevB.70.035321 70, 035321 (2004).
-
(2004)
Phys. Rev. B
, vol.70
, pp. 035321
-
-
Govorov, A.O.1
-
21
-
-
0035910496
-
-
SCIEAS 0036-8075 10.1126/science.291.5503.451
-
M. Bayer, P. Hawrylak, K. Hinzer, S. Fafard, M. Korkusinski, Z. R. Wasilewski, O. Stern, and A. Forchel, Science SCIEAS 0036-8075 10.1126/science.291.5503.451 291, 451 (2001).
-
(2001)
Science
, vol.291
, pp. 451
-
-
Bayer, M.1
Hawrylak, P.2
Hinzer, K.3
Fafard, S.4
Korkusinski, M.5
Wasilewski, Z.R.6
Stern, O.7
Forchel, A.8
-
22
-
-
31944432846
-
-
SCIEAS 0036-8075 10.1126/science.1121189
-
E. A. Stinaff, M. Scheibner, A. S. Bracker, I. V. Ponomarev, V. L. Korenev, M. E. Ware, M. F. Doty, T. L. Reinecke, and D. Gammon, Science SCIEAS 0036-8075 10.1126/science.1121189 311, 636 (2006);
-
(2006)
Science
, vol.311
, pp. 636
-
-
Stinaff, E.A.1
Scheibner, M.2
Bracker, A.S.3
Ponomarev, I.V.4
Korenev, V.L.5
Ware, M.E.6
Doty, M.F.7
Reinecke, T.L.8
Gammon, D.9
-
23
-
-
18244376598
-
-
PRLTAO 0031-9007 10.1103/PhysRevLett.94.057402
-
H. J. Krenner, M. Sabathil, E. C. Clark, A. Kress, D. Schuh, M. Bichler, G. Abstreiter, and J. J. Finley, Phys. Rev. Lett. PRLTAO 0031-9007 10.1103/PhysRevLett.94.057402 94, 057402 (2005).
-
(2005)
Phys. Rev. Lett.
, vol.94
, pp. 057402
-
-
Krenner, H.J.1
Sabathil, M.2
Clark, E.C.3
Kress, A.4
Schuh, D.5
Bichler, M.6
Abstreiter, G.7
Finley, J.J.8
-
24
-
-
34547986101
-
-
We note that the perturbation theory can be applied to a single QD system if the confining potential is sufficiently strong, i.e., ΔE Umag, where ΔE denotes the energies of all single-particle excitations and Umag is the magnetic interaction energy (Ref.). In the double QD, we should use a degenerate perturbation theory. To determine ψG within the zero-order perturbation theory, we write a wave function as a linear combination of two bound states (s and a). Then, the effect of all excited states on ψG can be estimated using the first-order corrections.
-
We note that the perturbation theory can be applied to a single QD system if the confining potential is sufficiently strong, i.e., ΔE Umag, where ΔE denotes the energies of all single-particle excitations and Umag is the magnetic interaction energy (Ref.). In the double QD, we should use a degenerate perturbation theory. To determine ψG within the zero-order perturbation theory, we write a wave function as a linear combination of two bound states (s and a). Then, the effect of all excited states on ψG can be estimated using the first-order corrections.
-
-
-
-
26
-
-
0004395561
-
-
PRBMDO 0163-1829 10.1103/PhysRevB.34.1080
-
Ji-Wei Wu, A. V. Nurmikko, and J. J. Quinn, Phys. Rev. B PRBMDO 0163-1829 10.1103/PhysRevB.34.1080 34, 1080 (1986).
-
(1986)
Phys. Rev. B
, vol.34
, pp. 1080
-
-
Wu, J.1
Nurmikko, A.V.2
Quinn, J.J.3
-
27
-
-
0001627497
-
-
PRBMDO 0163-1829 10.1103/PhysRevB.54.13938
-
J. Miao, W. E. Hagston, and T. Stirner, Phys. Rev. B PRBMDO 0163-1829 10.1103/PhysRevB.54.13938 54, 13938 (1996).
-
(1996)
Phys. Rev. B
, vol.54
, pp. 13938
-
-
Miao, J.1
Hagston, W.E.2
Stirner, T.3
-
29
-
-
34547975291
-
-
For T∼ Tc2, the magnetic potential δU is small because of relatively high temperature. For the temperature interval T∼ Tc1, the matrix elements in Eq. 6 becomes small due to the orthogonality of wave functions.
-
For T∼ Tc2, the magnetic potential δU is small because of relatively high temperature. For the temperature interval T∼ Tc1, the matrix elements in Eq. 6 becomes small due to the orthogonality of wave functions.
-
-
-
|