-
1
-
-
0029345226
-
New conditions for global stability of neural networks with application to linear and quadratic programming problems
-
Jul.
-
M. Forti and A. Tesi, “New conditions for global stability of neural networks with application to linear and quadratic programming problems,” IEEE Trans. Circuits Syst. I, Fundam. Theory App., vol. 42, no. 7, pp. 354–366, Jul. 1995.
-
(1995)
IEEE Trans. Circuits Syst. I, Fundam. Theory App.
, vol.42
, Issue.7
, pp. 354-366
-
-
Forti, M.1
Tesi, A.2
-
2
-
-
0032418487
-
Stability analysis of delayed cellular neural networks
-
Dec.
-
J. Cao and D. Zhou, “Stability analysis of delayed cellular neural networks,” Neural Netw., vol. 11, no. 9, pp. 1601–1605, Dec. 1998.
-
(1998)
Neural Netw.
, vol.11
, Issue.9
, pp. 1601-1605
-
-
Cao, J.1
Zhou, D.2
-
3
-
-
0032165293
-
Robust stability for interval Hopfield neural networks with time delay
-
Sep.
-
X. Liao and J. Yu, “Robust stability for interval Hopfield neural networks with time delay,” IEEE Trans. Neural Netw., vol. 9, pp. 1042–1046, Sep. 1998.
-
(1998)
IEEE Trans. Neural Netw.
, vol.9
, pp. 1042-1046
-
-
Liao, X.1
Yu, J.2
-
4
-
-
0035508792
-
Novel robust stability criteria for interval-delayed Hopfield neural networks
-
Nov.
-
X. Liao, K. Wong, Z. Wu, and G. Chen, “Novel robust stability criteria for interval-delayed Hopfield neural networks,” IEEE Trans. Circuits Syst. I, Fundam. Theory Appl., vol. 48, no. 11, pp. 1355–1359, Nov. 2001.
-
(2001)
IEEE Trans. Circuits Syst. I, Fundam. Theory Appl.
, vol.48
, Issue.11
, pp. 1355-1359
-
-
Liao, X.1
Wong, K.2
Wu, Z.3
Chen, G.4
-
5
-
-
0037216938
-
Global robust stability of delayed neural networks
-
Jan.
-
S. Arik, “Global robust stability of delayed neural networks,” IEEE Trans. Circuits Syst. I, Fundam. Theory App., vol. 50, no. 1, pp. 156–160, Jan. 2003.
-
(2003)
IEEE Trans. Circuits Syst. I, Fundam. Theory App.
, vol.50
, Issue.1
, pp. 156-160
-
-
Arik, S.1
-
6
-
-
2442484035
-
Globally exponentially robust stability and periodicity of delayed neural networks
-
J. Cao and T. Chen, “Globally exponentially robust stability and periodicity of delayed neural networks,” Chaos, Solitons Fractals, vol. 22, no. 4, pp. 957–963, 2004.
-
(2004)
Chaos, Solitons Fractals
, vol.22
, Issue.4
, pp. 957-963
-
-
Cao, J.1
Chen, T.2
-
7
-
-
12544252350
-
Global robust stability of delayed neural networks: An LMI approach
-
Jan.
-
V. Singh, “Global robust stability of delayed neural networks: An LMI approach,” IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 52, no. 1, pp. 33–36, Jan. 2005.
-
(2005)
IEEE Trans. Circuits Syst. II, Exp. Briefs
, vol.52
, Issue.1
, pp. 33-36
-
-
Singh, V.1
-
8
-
-
14644434391
-
Global asymptotic and robust stability of recurrent neural networks with time delays
-
Feb.
-
J. Cao and J. Wang, “Global asymptotic and robust stability of recurrent neural networks with time delays,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 52, no. 2, pp. 417–426, Feb. 2005.
-
(2005)
IEEE Trans. Circuits Syst. I, Reg. Papers
, vol.52
, Issue.2
, pp. 417-426
-
-
Cao, J.1
Wang, J.2
-
9
-
-
31344444201
-
Global robust stability analysis of neural networks with multiple time delays
-
Jan.
-
N. Ozcan and S. Arik, “Global robust stability analysis of neural networks with multiple time delays,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 53, no. 1, pp. 166–176, Jan. 2006.
-
(2006)
IEEE Trans. Circuits Syst. I, Reg. Papers
, vol.53
, Issue.1
, pp. 166-176
-
-
Ozcan, N.1
Arik, S.2
-
10
-
-
33750292531
-
On the global robust asymptotic stability of BAM neural networks with time-varying delays
-
X. Lou and B. Cui, “On the global robust asymptotic stability of BAM neural networks with time-varying delays,” Neurocomput., vol. 70, pp. 273–279, 2006.
-
(2006)
Neurocomput.
, vol.70
, pp. 273-279
-
-
Lou, X.1
Cui, B.2
-
11
-
-
0003595806
-
-
Philadelphia, PA: SIAM
-
S. Boyd, L. El Ghaoui, E. Feron, and V. Balakrishnan, Linear Matrix Inequalities in System and Control Theory. Philadelphia, PA: SIAM, 1994.
-
(1994)
Linear Matrix Inequalities in System and Control Theory
-
-
Boyd, S.1
El Ghaoui, L.2
Feron, E.3
Balakrishnan, V.4
|