메뉴 건너뛰기




Volumn , Issue , 2006, Pages

Bagging.LMS: A bagging-based linear fusion with least-mean-square error update for regression

Author keywords

[No Author keywords available]

Indexed keywords

ALGORITHMS; ERROR ANALYSIS; LEAST SQUARES APPROXIMATIONS; REGRESSION ANALYSIS;

EID: 34547591932     PISSN: 21593442     EISSN: 21593450     Source Type: Conference Proceeding    
DOI: 10.1109/TENCON.2006.343982     Document Type: Conference Paper
Times cited : (5)

References (22)
  • 5
    • 0030211964 scopus 로고    scopus 로고
    • Bagging predictors
    • L. Breiman, "Bagging predictors," Machine Learning, vol. 24, no. 2, pp. 123-140, 1996.
    • (1996) Machine Learning , vol.24 , Issue.2 , pp. 123-140
    • Breiman, L.1
  • 7
    • 0025448521 scopus 로고
    • The strength of weak learnability
    • R.E. Schapire, "The strength of weak learnability," Machine Learning, vol. 5, no. 2, pp. 197-227, 1990.
    • (1990) Machine Learning , vol.5 , Issue.2 , pp. 197-227
    • Schapire, R.E.1
  • 9
    • 0031211090 scopus 로고    scopus 로고
    • A decision-theoretic generalization of on-line learning and an application to boosting
    • Y. Freund and R.E. Schapire, "A decision-theoretic generalization of on-line learning and an application to boosting," Journal of Computer and System Sciences, vol. 55, pp. 119-139, 1997.
    • (1997) Journal of Computer and System Sciences , vol.55 , pp. 119-139
    • Freund, Y.1    Schapire, R.E.2
  • 12
    • 0030085913 scopus 로고    scopus 로고
    • Analysis of decision boundaries in linearly combined neural classifiers
    • K. Tumer and J. Ghosh, "Analysis of decision boundaries in linearly combined neural classifiers," Pattern Recognition, vol. 29, no. 2, pp. 341-348, 1996.
    • (1996) Pattern Recognition , vol.29 , Issue.2 , pp. 341-348
    • Tumer, K.1    Ghosh, J.2
  • 15
    • 0035478854 scopus 로고    scopus 로고
    • Random forests
    • L. Breiman, "Random forests," Machine Learning, vol. 45, no. 1, pp. 5-32, 2001.
    • (2001) Machine Learning , vol.45 , Issue.1 , pp. 5-32
    • Breiman, L.1
  • 16
    • 84901462536 scopus 로고    scopus 로고
    • Fixed and trained combiners for fusion of unbalanced pattern classifiers
    • Annapolis, MD, USA
    • F. Roli, G. Fumera, and J. Kittler, "Fixed and trained combiners for fusion of unbalanced pattern classifiers," in Proc. 5th Int'l Conf. Information Fusion. (IF'02), Annapolis, MD, USA, 2002, vol. 1, pp. 278-284.
    • (2002) Proc. 5th Int'l Conf. Information Fusion. (IF'02) , vol.1 , pp. 278-284
    • Roli, F.1    Fumera, G.2    Kittler, J.3
  • 17
    • 1542301061 scopus 로고    scopus 로고
    • Fusing output information in neural networks: Ensemble performs better
    • Cancun, Mexico
    • Y.F. Wu and J.I, Arribas, "Fusing output information in neural networks: Ensemble performs better," in Proc. 25th IEEE EMBS Annu. Int'l Conf. (EMBC'03), Cancun, Mexico, 2003, vol. 3, pp. 2265-2268.
    • (2003) Proc. 25th IEEE EMBS Annu. Int'l Conf. (EMBC'03) , vol.3 , pp. 2265-2268
    • Wu, Y.F.1    Arribas, J.I.2
  • 18
    • 21244501361 scopus 로고    scopus 로고
    • A theoretical and experimental analysis of linear combiners for multiple classifier systems
    • G. Fumera and F. Roli, "A theoretical and experimental analysis of linear combiners for multiple classifier systems," IEEE Trans. Pattern Analysis and Machine Intelligenee, vol. 27, no. 6, pp. 942-956, 2005.
    • (2005) IEEE Trans. Pattern Analysis and Machine Intelligenee , vol.27 , Issue.6 , pp. 942-956
    • Fumera, G.1    Roli, F.2
  • 21
    • 0028543366 scopus 로고
    • Training feedforward networks with the Marquardt algorithm
    • M.T., Hagan and M. Menhaj, "Training feedforward networks with the Marquardt algorithm," IEEE Trans. Neural Networks, vol. 5, no. 6, pp. 989-993, 1994.
    • (1994) IEEE Trans. Neural Networks , vol.5 , Issue.6 , pp. 989-993
    • Hagan, M.T.1    Menhaj, M.2
  • 22
    • 84943274699 scopus 로고
    • A direct adaptive method for faster backpropagation learning: The RPROP algorithm
    • San Francisco, CA, USA
    • M. Riedmiller and H. Braun, "A direct adaptive method for faster backpropagation learning: The RPROP algorithm," in Proc. 1993 IEEE Int'l Conf Neural Networks (ICNN'93), San Francisco, CA, USA, 1993, vol. 1, pp. 586-591.
    • (1993) Proc. 1993 IEEE Int'l Conf Neural Networks (ICNN'93) , vol.1 , pp. 586-591
    • Riedmiller, M.1    Braun, H.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.