메뉴 건너뛰기




Volumn 3, Issue , 2004, Pages 2437-2442

Neural network fusion strategies for identifying breast masses

Author keywords

Breast cancer; Information fusion; Neural networks; Pattern recognition; Perceptron; Posterior probabilities

Indexed keywords

BREAST CANCERS; COMPONENT NEURAL NETWORKS (CNN); INFORMATION FUSIONS; POSTERIOR PROBABILITIES;

EID: 10844231826     PISSN: 10987576     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/IJCNN.2004.1381010     Document Type: Conference Paper
Times cited : (29)

References (35)
  • 2
    • 0032916260 scopus 로고    scopus 로고
    • Role and evaluation of mammography and other imaging methods for breast cancer detection, diagnosis, and staging
    • S. A. Feig, "Role and evaluation of mammography and other imaging methods for breast cancer detection, diagnosis, and staging," Semin Nucl Med, vol. 29, no. 1, pp. 3-15, 1999.
    • (1999) Semin Nucl Med , vol.29 , Issue.1 , pp. 3-15
    • Feig, S.A.1
  • 3
    • 0028805669 scopus 로고
    • Screening mammography in community practice
    • Dec.
    • M. Brown, F. Houn, E. Sickles, and L. Kessler, "Screening mammography in community practice," Amer. J. Roentgen., vol. 165, pp. 1373-1377, Dec. 1995.
    • (1995) Amer. J. Roentgen. , vol.165 , pp. 1373-1377
    • Brown, M.1    Houn, F.2    Sickles, E.3    Kessler, L.4
  • 8
    • 1542271005 scopus 로고    scopus 로고
    • Classification of tumors and masses in mammograms using neural networks with shape and texture features
    • Cancun, Mexico, Sep.
    • T. Andre and R. M. Rangayyan, "Classification of tumors and masses in mammograms using neural networks with shape and texture features," Proc. of 25th IEEE EMBS Annu. Int'I Conf. (EMBC'03), Cancun, Mexico, pp. 2261-2264, Sep. 2003.
    • (2003) Proc. of 25th IEEE EMBS Annu. Int'I Conf. (EMBC'03) , pp. 2261-2264
    • Andre, T.1    Rangayyan, R.M.2
  • 9
    • 0000703707 scopus 로고
    • Structural adaptation and generalization in supervised feed-forward networks
    • J. Ghosh and K. Tumer, "Structural adaptation and generalization in supervised feed-forward networks," J. of Artificial Neural Networks, vol. 1, no. 4, pp. 431-458, 1994.
    • (1994) J. of Artificial Neural Networks , vol.1 , Issue.4 , pp. 431-458
    • Ghosh, J.1    Tumer, K.2
  • 12
    • 1542301061 scopus 로고    scopus 로고
    • Fusing output information in neural networks: Ensemble performs better
    • Cancun, Mexico, Sep.
    • Y. Wu and J. I. Arribas, "Fusing output information in neural networks: Ensemble performs better," Proc. of the 25th IEEE EMBS Annu. Int'l Conf. (EMBC'03), Cancun, Mexico, vol. 3, pp. 2265-2268, Sep. 2003.
    • (2003) Proc. of the 25th IEEE EMBS Annu. Int'l Conf. (EMBC'03) , vol.3 , pp. 2265-2268
    • Wu, Y.1    Arribas, J.I.2
  • 13
    • 0029304867 scopus 로고
    • Improving model accuracy using optimal linear combinations of trained neural networks
    • S. Hashem and B. Schmeiser, "Improving model accuracy using optimal linear combinations of trained neural networks," IEEE Trans. Neural Networks, vol. 6, no. 3, pp. 792-794, 1995.
    • (1995) IEEE Trans. Neural Networks , vol.6 , Issue.3 , pp. 792-794
    • Hashem, S.1    Schmeiser, B.2
  • 16
    • 0030211964 scopus 로고    scopus 로고
    • Bagging predictors
    • L. Breiman, "Bagging predictors," Machine Learning, vol. 24, no. 2, pp. 123-140, 1996.
    • (1996) Machine Learning , vol.24 , Issue.2 , pp. 123-140
    • Breiman, L.1
  • 17
    • 0036472946 scopus 로고    scopus 로고
    • A theoretical study on six classifier fusion strategics
    • L. I. Kuncheva, "A theoretical study on six classifier fusion strategics," IEEE Trans. Pattern Analysis and Machine Learning, vol.24, no. 2, pp. 281-286, 2002.
    • (2002) IEEE Trans. Pattern Analysis and Machine Learning , vol.24 , Issue.2 , pp. 281-286
    • Kuncheva, L.I.1
  • 19
    • 6344227338 scopus 로고    scopus 로고
    • Design of multiple classifier systems
    • H. Bunke and A. Kandel (Eds.), Singapore: World Scientific Publishing
    • F. Roli and G. Giacinto, "Design of multiple classifier systems," in H. Bunke and A. Kandel (Eds.) Hybrid Methods in Pattern Recognition, Singapore: World Scientific Publishing, 2002.
    • (2002) Hybrid Methods in Pattern Recognition
    • Roli, F.1    Giacinto, G.2
  • 23
    • 2142744945 scopus 로고
    • Efficient learning and second-order methods
    • Denver
    • Y. LeCun, "Efficient learning and second-order methods," A Tutorial at NIPS '93, Denver, 1993.
    • (1993) A Tutorial at NIPS '93
    • LeCun, Y.1
  • 24
    • 0024880831 scopus 로고
    • Multilayer feedforward networks are universal approximators
    • K. M. Hornik, M. Stinchcombe, and H. White, "Multilayer feedforward networks are universal approximators," Neural Networks, vol. 2, pp. 359-366, 1989.
    • (1989) Neural Networks , vol.2 , pp. 359-366
    • Hornik, K.M.1    Stinchcombe, M.2    White, H.3
  • 25
    • 0024861871 scopus 로고
    • Approximation by superpositions of a sigmoidal function
    • G. Cybenko, "Approximation by superpositions of a sigmoidal function," Mathematics of Control, Signals, and Systems, vol.2, no.4, pp.303-314, 1989.
    • (1989) Mathematics of Control, Signals, and Systems , vol.2 , Issue.4 , pp. 303-314
    • Cybenko, G.1
  • 27
    • 85032752004 scopus 로고
    • Progress in supervised neural networks: What's new since Lippmann?
    • D. R. Hush and B. G. Horne, "Progress in supervised neural networks: What's new since Lippmann?" IEEE Signal Processing Magazine, vol. 10, pp. 8-39, 1993.
    • (1993) IEEE Signal Processing Magazine , vol.10 , pp. 8-39
    • Hush, D.R.1    Horne, B.G.2
  • 29
    • 84943274699 scopus 로고
    • A direct adaptive method for faster backpropagation learning: The RPROP algorithm
    • M. Riedmiller and H. Braun, "A direct adaptive method for faster backpropagation learning: The RPROP algorithm," Proc. of the 1993 Int'l Conf. Neural Networks (IJCNN'93), vol.1, pp.586 -591, 1993.
    • (1993) Proc. of the 1993 Int'l Conf. Neural Networks (IJCNN'93) , vol.1 , pp. 586-591
    • Riedmiller, M.1    Braun, H.2
  • 30
    • 0027205884 scopus 로고
    • A scaled conjugate gradient algorithm for fast supervised learning
    • M. F. Moller, "A scaled conjugate gradient algorithm for fast supervised learning," Neural Networks, vol. 6, pp. 525-533, 1993.
    • (1993) Neural Networks , vol.6 , pp. 525-533
    • Moller, M.F.1
  • 31
    • 0028543366 scopus 로고
    • Training feedforward networks with the Marquardt algorithm
    • M. T. Hagan and M. Menhaj, "Training feedforward networks with the Marquardt algorithm," IEEE Trans. Neural Networks, vol. 5, no. 6 pp.989-993, 1994.
    • (1994) IEEE Trans. Neural Networks , vol.5 , Issue.6 , pp. 989-993
    • Hagan, M.T.1    Menhaj, M.2
  • 32
    • 0030085913 scopus 로고    scopus 로고
    • Analysis of decision boundaries in linearly combined neural classifiers
    • Feb.
    • K. Tumer and J. Ghosh, "Analysis of decision boundaries in linearly combined neural classifiers," Pattern Recognition, vol. 29, no. 2, pp.341-348, Feb. 1996.
    • (1996) Pattern Recognition , vol.29 , Issue.2 , pp. 341-348
    • Tumer, K.1    Ghosh, J.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.