메뉴 건너뛰기




Volumn 1, Issue , 2006, Pages 960-965

Study of traffic flow forecasting based on genetic neural network

Author keywords

[No Author keywords available]

Indexed keywords

FEEDFORWARD NEURAL NETWORKS; FORECASTING; GENETIC ALGORITHMS; MATHEMATICAL MODELS; REAL TIME SYSTEMS; STREET TRAFFIC CONTROL;

EID: 34547538025     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/ISDA.2006.257     Document Type: Conference Paper
Times cited : (9)

References (23)
  • 1
    • 0010373099 scopus 로고    scopus 로고
    • Modeling and Forecasting Vehicular Traffic Flow as a Seasonal Stochastic Time Series Process,
    • Doctoral Dissertation, University of Virginia, Charlottesville
    • B. M. William, "Modeling and Forecasting Vehicular Traffic Flow as a Seasonal Stochastic Time Series Process," Doctoral Dissertation, University of Virginia, Charlottesville, 1999.
    • (1999)
    • William, B.M.1
  • 4
    • 0021375695 scopus 로고
    • Dynamic Prediction of Traffic Volume through Kalman Filer Theory
    • I. Okutani and Y. J. Stephanedes, "Dynamic Prediction of Traffic Volume through Kalman Filer Theory," Transportation Rearch, Part B, vol 18B, 1-11, 1984.
    • (1984) Transportation Rearch, Part B , vol.18 B , pp. 1-11
    • Okutani, I.1    Stephanedes, Y.J.2
  • 5
    • 0027807084 scopus 로고    scopus 로고
    • E. S. Yu and C. Y. R. Chen, Traffic Prediction Using Neural Networks, Global Telecommunications Conference, 1993, including a Communications Theory Mini-Conference, Technical Program Conference Record, IEEE in Houston, GLOBECOM '93., IEEE, 29 Nov. -2 Dec. 1993, 2, pp. 991-995.
    • E. S. Yu and C. Y. R. Chen, "Traffic Prediction Using Neural Networks," Global Telecommunications Conference, 1993, including a Communications Theory Mini-Conference, Technical Program Conference Record, IEEE in Houston, GLOBECOM '93., IEEE, 29 Nov. -2 Dec. 1993, vol. 2, pp. 991-995.
  • 6
    • 84863114799 scopus 로고    scopus 로고
    • J. Hall and P. Mars, The Limitations of Artificial Neural Networks for Traffic Prediction, Computers and Communications, 1998, ISCC'98, Proceedings, Third IEEE Symposium on 30 June-2 July 1998, pp. 8-12.
    • J. Hall and P. Mars, "The Limitations of Artificial Neural Networks for Traffic Prediction," Computers and Communications, 1998, ISCC'98, Proceedings, Third IEEE Symposium on 30 June-2 July 1998, pp. 8-12.
  • 7
    • 0026128928 scopus 로고
    • Nonparametric Regression and Short-Term freeway traffic forecasting
    • G. A. Davis and N. L. Nihan, "Nonparametric Regression and Short-Term freeway traffic forecasting," ACSE Journal of Transportation Engineering, vol. 117, no.2, 1991, pp.178-188.
    • (1991) ACSE Journal of Transportation Engineering , vol.117 , Issue.2 , pp. 178-188
    • Davis, G.A.1    Nihan, N.L.2
  • 8
    • 0031472064 scopus 로고    scopus 로고
    • Traffic flow forecasting: Comparison of modeling approaches
    • B. L. Smith and M. J. Demetsky, "Traffic flow forecasting: comparison of modeling approaches," ACSE Journal of Transportation Engineering, vol. 123, no. 4, 1997, pp. 261-266.
    • (1997) ACSE Journal of Transportation Engineering , vol.123 , Issue.4 , pp. 261-266
    • Smith, B.L.1    Demetsky, M.J.2
  • 9
    • 34547523655 scopus 로고
    • Comparison of Parametric and Nonparametric Models for Traffic Flow Forecasting
    • B. L. Smith, B. M. Williams, and R. K. Oswald, "Comparison of Parametric and Nonparametric Models for Traffic Flow Forecasting," ASCE Journal of Transportation Engineering, vol. 117, no. 2, 1991, pp. 178-188.
    • (1991) ASCE Journal of Transportation Engineering , vol.117 , Issue.2 , pp. 178-188
    • Smith, B.L.1    Williams, B.M.2    Oswald, R.K.3
  • 11
    • 0024866495 scopus 로고
    • On the approximate realization of continuous mappings by neural networks
    • K. I. Funahashi, "On the approximate realization of continuous mappings by neural networks," Neural Netw., vol. 2, pp. 183-192, 1989.
    • (1989) Neural Netw , vol.2 , pp. 183-192
    • Funahashi, K.I.1
  • 12
    • 0024880831 scopus 로고
    • Multilayer feedforward networks are universal approcimators
    • K. Hornick, M. Stinchcombe, and H. White, "Multilayer feedforward networks are universal approcimators," Neural Netw., vol. 2, pp. 359-366, 1989.
    • (1989) Neural Netw , vol.2 , pp. 359-366
    • Hornick, K.1    Stinchcombe, M.2    White, H.3
  • 13
    • 0037276988 scopus 로고    scopus 로고
    • Tuning of the structure and parameters of a neural network using an improved genetic algorithm
    • H. F. Leung, H. K. Lam, S. H. Ling, and K. S. Tam, "Tuning of the structure and parameters of a neural network using an improved genetic algorithm," IEEE Trans. Neural Nerw., vol. 14, no. 1, pp. 79-88.
    • IEEE Trans. Neural Nerw , vol.14 , Issue.1 , pp. 79-88
    • Leung, H.F.1    Lam, H.K.2    Ling, S.H.3    Tam, K.S.4
  • 14
    • 2542618358 scopus 로고    scopus 로고
    • Efficient learning algorithms for three-layer regular feedforward fuzzy neural networks
    • May
    • P. Y. Liu and H. X. Li, "Efficient learning algorithms for three-layer regular feedforward fuzzy neural networks," IEEE Trans. Neural Netw., vol. 15, no. 3, pp. 545-558, May 2004.
    • (2004) IEEE Trans. Neural Netw , vol.15 , Issue.3 , pp. 545-558
    • Liu, P.Y.1    Li, H.X.2
  • 15
    • 13844255524 scopus 로고    scopus 로고
    • Smooth function approximation using neural networks
    • Jan
    • S. Ferrari and R. F. Steangel, "Smooth function approximation using neural networks," IEEE Trans. Neural Netw., vol. 16, no. 1, pp. 24-38, Jan. 2005.
    • (2005) IEEE Trans. Neural Netw , vol.16 , Issue.1 , pp. 24-38
    • Ferrari, S.1    Steangel, R.F.2
  • 18
    • 0031143030 scopus 로고    scopus 로고
    • A new evolutionary system for evolving artificial neural networks
    • X. Yao and Y. Liu, "A new evolutionary system for evolving artificial neural networks," IEEE. Neural Netw., vol. 8, no. 3, pp. 694-713, 1997.
    • (1997) IEEE. Neural Netw , vol.8 , Issue.3 , pp. 694-713
    • Yao, X.1    Liu, Y.2
  • 19
    • 0026624310 scopus 로고
    • Genetic generation of both the weights and architecture for a neural network
    • Seattle, WA
    • J. R. Koza and J. P. Rice, "Genetic generation of both the weights and architecture for a neural network," in Proc. Int. Joint Conf. Neural Networks, Seattle, WA, 1991, pp. 397-404.
    • (1991) Proc. Int. Joint Conf. Neural Networks , pp. 397-404
    • Koza, J.R.1    Rice, J.P.2
  • 21
    • 0001516959 scopus 로고
    • Evolving optimal neural networks using genetic algorithms with occam's razor
    • B. Zhang and H. Muhlenbein, "Evolving optimal neural networks using genetic algorithms with occam's razor," Complex Systems, vol. 7, pp. 199-229, 1993.
    • (1993) Complex Systems , vol.7 , pp. 199-229
    • Zhang, B.1    Muhlenbein, H.2
  • 23
    • 34547544869 scopus 로고    scopus 로고
    • D. Curran and C. O'Riordan, Applying evolutionary computation to designing neural networks: a study of the state of the art, Department of Information Technology, National University of Ireland, Galway, Ireland, Technical Report NUIG-IT-111002, 2002.
    • D. Curran and C. O'Riordan, "Applying evolutionary computation to designing neural networks: a study of the state of the art," Department of Information Technology, National University of Ireland, Galway, Ireland, Technical Report NUIG-IT-111002, 2002.


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.