메뉴 건너뛰기




Volumn , Issue , 2006, Pages 23-32

Quantization-based probabilistic feature modeling for kernel design in content-based image retrieval

Author keywords

Kernel; Probabilistic modeling; Quantization; Relevance feedback; Support vector machines

Indexed keywords

PROBABILISTIC MODELING; PROBABILISTIC QUANTITIES; RELEVANCE FEEDBACK;

EID: 34547489435     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1145/1178677.1178684     Document Type: Conference Paper
Times cited : (4)

References (23)
  • 1
    • 34547415482 scopus 로고    scopus 로고
    • Corel stock photo library. Corel Corp. Ontario, Canada
    • Corel stock photo library. Corel Corp. Ontario, Canada.
  • 2
    • 0003857778 scopus 로고    scopus 로고
    • A gentle tutorial on the em algorithm and its application to parameter estimation for gaussian mixture and hidden markov models
    • Technical Report, University of Berkeley, ICSI-TR-97-021
    • J. A. Bilmes. A gentle tutorial on the em algorithm and its application to parameter estimation for gaussian mixture and hidden markov models. Technical Report, University of Berkeley, ICSI-TR-97-021, 1997.
    • (1997)
    • Bilmes, J.A.1
  • 3
    • 27144489164 scopus 로고    scopus 로고
    • A tutorial on support vector machines for pattern recognition
    • C. Burges. A tutorial on support vector machines for pattern recognition. Data Mining and Knowledge discovery, pages 121-167, 1998.
    • (1998) Data Mining and Knowledge discovery , pp. 121-167
    • Burges, C.1
  • 4
    • 0034792634 scopus 로고    scopus 로고
    • Support vector machine active learning for image retrieval
    • October
    • E. Chang and S. Tong. Support vector machine active learning for image retrieval. ACM International Conference on Multimedia, pages 107-118, October 2001.
    • (2001) ACM International Conference on Multimedia , pp. 107-118
    • Chang, E.1    Tong, S.2
  • 9
    • 34547418614 scopus 로고    scopus 로고
    • Vector quantization and density estimation
    • Gray and Olshen. Vector quantization and density estimation. In SEQS: Sequences '91, 1998.
    • (1998) SEQS: Sequences '91
    • Gray1    Olshen2
  • 12
    • 0035172606 scopus 로고    scopus 로고
    • Image retrieval with relevance feedback: From heuristic weight adjustment to optimal learning methods
    • T. S. Huang and X. S. Zhou. Image retrieval with relevance feedback: From heuristic weight adjustment to optimal learning methods. IEEE International Conference on Image Processing, 2001.
    • (2001) IEEE International Conference on Image Processing
    • Huang, T.S.1    Zhou, X.S.2
  • 16
    • 15344345345 scopus 로고    scopus 로고
    • A Kullback-Leibler divergence based kernel for SVM classification in multimedia applications
    • P. J. Moreno, P. Ho, and N. Vasconceles. A Kullback-Leibler divergence based kernel for SVM classification in multimedia applications. Neural Information Processing Systems, 2003.
    • (2003) Neural Information Processing Systems
    • Moreno, P.J.1    Ho, P.2    Vasconceles, N.3
  • 17
    • 0032636367 scopus 로고    scopus 로고
    • Probabilistic feature relevance learning for content-based image retrieval
    • J. Peng, B. Bhanu, and S. Qing. Probabilistic feature relevance learning for content-based image retrieval. Computer Vision and Image understanding, 75:150-164, 1999.
    • (1999) Computer Vision and Image understanding , vol.75 , pp. 150-164
    • Peng, J.1    Bhanu, B.2    Qing, S.3
  • 21
    • 0036447853 scopus 로고    scopus 로고
    • Exploiting group structure to improve retrieval accuracy and speed in image databases
    • N. Vasconcelos. Exploiting group structure to improve retrieval accuracy and speed in image databases. In International conference on Image Processing, 2002.
    • (2002) International conference on Image Processing
    • Vasconcelos, N.1
  • 22
    • 26444495559 scopus 로고    scopus 로고
    • Divergence estimation of continuous distributions based on data-dependent partitions
    • Q. Wang, S. R. Kullkarni, and S. Verdu. Divergence estimation of continuous distributions based on data-dependent partitions. IEEE Trans on Information Theory, 51, 2005.
    • (2005) IEEE Trans on Information Theory , vol.51
    • Wang, Q.1    Kullkarni, S.R.2    Verdu, S.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.