-
1
-
-
7444220645
-
-
K. S. Novoselov, A. K. Geim, S. V. Morosov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov: Science 306 (2004) 666.
-
(2004)
Science
, vol.306
, pp. 666
-
-
Novoselov, K.S.1
Geim, A.K.2
Morosov, S.V.3
Jiang, D.4
Zhang, Y.5
Dubonos, S.V.6
Grigorieva, I.V.7
Firsov, A.A.8
-
2
-
-
27744534165
-
-
K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov: Nature 438 (2005) 197.
-
(2005)
Nature
, vol.438
, pp. 197
-
-
Novoselov, K.S.1
Geim, A.K.2
Morozov, S.V.3
Jiang, D.4
Katsnelson, M.I.5
Grigorieva, I.V.6
Dubonos, S.V.7
Firsov, A.A.8
-
6
-
-
33644936781
-
-
N. M. R. Peres, F. Guinea, and A. H. Castro Neto: Phys. Rev. B 73 (2006) 125411.
-
N. M. R. Peres, F. Guinea, and A. H. Castro Neto: Phys. Rev. B 73 (2006) 125411.
-
-
-
-
9
-
-
0036652557
-
-
P. Esquinazi, A. Setzler, R. Höne, C. Semmelhack, Y. Kopelevich, D. Spemann, T. Butz, B. Kohlstrunk, and M. Lösche: Phys. Rev. B 66 (2002) 024429, and references therein.
-
P. Esquinazi, A. Setzler, R. Höne, C. Semmelhack, Y. Kopelevich, D. Spemann, T. Butz, B. Kohlstrunk, and M. Lösche: Phys. Rev. B 66 (2002) 024429, and references therein.
-
-
-
-
16
-
-
32644482160
-
-
V. M. Pereira, F. Guinea, J. M. B. Lopes dos Santos, N. M. R. Peres, and A. H. Castro Neto: Phys. Rev. Lett. 96 (2006) 036801.
-
(2006)
Phys. Rev. Lett
, vol.96
, pp. 036801
-
-
Pereira, V.M.1
Guinea, F.2
Lopes dos Santos, J.M.B.3
Peres, N.M.R.4
Castro Neto, A.H.5
-
17
-
-
33947639578
-
-
T. O. Wehling, A. V. Balatsky, M. I. Katsnelson, A. I. Lichtenstein, K. Scharnberg, and R. Wiesendanger: Phys. Rev. B 75 (2007) 125425.
-
(2007)
Phys. Rev. B
, vol.75
, pp. 125425
-
-
Wehling, T.O.1
Balatsky, A.V.2
Katsnelson, M.I.3
Lichtenstein, A.I.4
Scharnberg, K.5
Wiesendanger, R.6
-
18
-
-
84858095530
-
-
14 the zero-mode wave function is inversely proportional to the distance from the impurity site, which implies that the normalization constant is proportional to 1/√lnL, where L is the linear system size L. Strictly speaking, therefore, the zero mode is not a localized state.
-
14) the zero-mode wave function is inversely proportional to the distance from the impurity site, which implies that the normalization constant is proportional to 1/√lnL, where L is the linear system size L. Strictly speaking, therefore, the zero mode is not a localized state.
-
-
-
-
20
-
-
34547464255
-
-
A chemisorbed hydrogen atom is mobile, but we do not consider the mobility here
-
A chemisorbed hydrogen atom is mobile, but we do not consider the mobility here.
-
-
-
-
22
-
-
34547415602
-
-
Charge density is found to be uniform except at the impurity sites, although the spin density spatially varies
-
Charge density is found to be uniform except at the impurity sites, although the spin density spatially varies.
-
-
-
-
23
-
-
84858095528
-
-
If we sum the moments in half of the total lattice points, i.e., in the rectangle with side lengths L/2 and √3L/2 around an impurity, the local moment is unity for any U.
-
If we sum the moments in half of the total lattice points, i.e., in the rectangle with side lengths L/2 and √3L/2 around an impurity, the local moment is unity for any U.
-
-
-
-
24
-
-
84858095529
-
-
The zero-mode wave function on sublattice α around an impurity site on sublattice α does not vanish exactly, but is negligibly small and tends to vanish when the distance between the two impurities goes to infinity
-
The zero-mode wave function on sublattice α around an impurity site on sublattice α does not vanish exactly, but is negligibly small and tends to vanish when the distance between the two impurities goes to infinity.
-
-
-
-
26
-
-
34547424466
-
-
The energy gain per vacancy is 0:0104t at U = 1:0t for L = 64 in the (A,B) case.
-
The energy gain per vacancy is 0:0104t at U = 1:0t for L = 64 in the (A,B) case.
-
-
-
|