-
2
-
-
33750438087
-
-
(a) Hull, K. L.; Lanni, E. L.; Sanford, M. S. J.Am. Chem. Soc. 2006, 128, 1407.
-
(2006)
J.Am. Chem. Soc
, vol.128
, pp. 1407
-
-
Hull, K.L.1
Lanni, E.L.2
Sanford, M.S.3
-
3
-
-
19744365933
-
-
(b) Kalyani, D.; Deprez, N. R.; Desai, L. V.; Sanford, M. S. J.Am. Chem. Soc. 2005, 127, 7330.
-
(2005)
J.Am. Chem. Soc
, vol.127
, pp. 7330
-
-
Kalyani, D.1
Deprez, N.R.2
Desai, L.V.3
Sanford, M.S.4
-
4
-
-
1542345322
-
-
Dick, A. R.; Hull, K. L.; Sanford, M. S. J.Am. Chem. Soc. 2004, 126, 2300. A Pd(IV) intermediate was proposed for the arylation of C-H bonds with aryl iodides, see:
-
(c) Dick, A. R.; Hull, K. L.; Sanford, M. S. J.Am. Chem. Soc. 2004, 126, 2300. A Pd(IV) intermediate was proposed for the arylation of C-H bonds with aryl iodides, see:
-
-
-
-
5
-
-
25444458063
-
-
(d) Zaitsev, V. G.; Shabashov, D.; Daugulis, O. J.Am. Chem. Soc. 2005, 127, 13154.
-
(2005)
J.Am. Chem. Soc
, vol.127
, pp. 13154
-
-
Zaitsev, V.G.1
Shabashov, D.2
Daugulis, O.3
-
8
-
-
33746917950
-
-
For examples of studies stoichiometric in palladium, in which distinct Pd(IV) complexes were isolated or detected in solution, using aryl or alkynyl hypervalent iodonium oxidants, alkyl or benzyl halides, propargyl bromides, diaryl diselenide or halogens, see: (a) Canty, A. J, Rodemann, T, Skelton, B. W, White, A. H. Organometallics 2006, 25, 3996
-
For examples of studies stoichiometric in palladium, in which distinct Pd(IV) complexes were isolated or detected in solution, using aryl or alkynyl hypervalent iodonium oxidants, alkyl or benzyl halides, propargyl bromides, diaryl diselenide or halogens, see: (a) Canty, A. J.; Rodemann, T.; Skelton, B. W.; White, A. H. Organometallics 2006, 25, 3996.
-
-
-
-
9
-
-
25144474992
-
-
(b) Dick, A. R.; Kampf, J. W.; Sanford, M. S. J.Am. Chem. Soc 2005, 127, 12790.
-
(2005)
J.Am. Chem. Soc
, vol.127
, pp. 12790
-
-
Dick, A.R.1
Kampf, J.W.2
Sanford, M.S.3
-
10
-
-
3242763773
-
-
(c) Campora, J.; Palma, P.; del Rio, D.; Lopez, J. A.; Valerga, P. Chem. Commun. 2004, 1490.
-
(2004)
Chem. Commun
, pp. 1490
-
-
Campora, J.1
Palma, P.2
del Rio, D.3
Lopez, J.A.4
Valerga, P.5
-
11
-
-
3142681619
-
-
(d) Canty, A. J.; Patel, J.; Rodemann, T.; Ryan, J. H.; Skelton, B. W.; White, A. H. Organometallics 2004, 23, 3466.
-
(2004)
Organometallics
, vol.23
, pp. 3466
-
-
Canty, A.J.1
Patel, J.2
Rodemann, T.3
Ryan, J.H.4
Skelton, B.W.5
White, A.H.6
-
12
-
-
4043131668
-
-
(e) Yamamoto, Y.; Kuwabara, S.; Matsuo, S.; Ohno, T.; Nishiyama, H.; Itoh, K. Organometallics 2004, 23, 3898.
-
(2004)
Organometallics
, vol.23
, pp. 3898
-
-
Yamamoto, Y.1
Kuwabara, S.2
Matsuo, S.3
Ohno, T.4
Nishiyama, H.5
Itoh, K.6
-
13
-
-
0742323800
-
-
(f) Canty, A. J.; Denney, M. C.; Patel, J.; Sun, H.; Skelton, B. W.; White, A. H. J.Organomet. Chem. 2004, 689, 672.
-
(2004)
J.Organomet. Chem
, vol.689
, pp. 672
-
-
Canty, A.J.1
Denney, M.C.2
Patel, J.3
Sun, H.4
Skelton, B.W.5
White, A.H.6
-
14
-
-
0037450893
-
-
(g) van Belzen, R.; Elsevier, C. J.; Dedieu, A.; Veldman, N.; Spek, A. L. Organometallics 2003, 22, 722.
-
(2003)
Organometallics
, vol.22
, pp. 722
-
-
van Belzen, R.1
Elsevier, C.J.2
Dedieu, A.3
Veldman, N.4
Spek, A.L.5
-
15
-
-
0002837654
-
-
(h) Canty, A. J.; Jin, H.; Penny, J. D. J.Organomet. Chem. 1999, 573, 30.
-
(1999)
J.Organomet. Chem
, vol.573
, pp. 30
-
-
Canty, A.J.1
Jin, H.2
Penny, J.D.3
-
16
-
-
0000783119
-
-
(i) Canty, A. J.; Hoare, J. L.; Patel, J.; Pfeffer, M.; Skelton, B. W.; White, A. H. Organometallics 1999, 18, 2660.
-
(1999)
Organometallics
, vol.18
, pp. 2660
-
-
Canty, A.J.1
Hoare, J.L.2
Patel, J.3
Pfeffer, M.4
Skelton, B.W.5
White, A.H.6
-
17
-
-
0002521519
-
-
and references cited therein
-
(j) Canty, A. J. Acc. Chem. Res. 1992, 25, 83 and references cited therein.
-
(1992)
Acc. Chem. Res
, vol.25
, pp. 83
-
-
Canty, A.J.1
-
19
-
-
37049072583
-
-
(l) Byers, P. K.; Canty, A. J.; Skelton, B. W.; White, A. H. J. Chem. Soc., Chem. Commun. 1987, 1093.
-
(1987)
J. Chem. Soc., Chem. Commun
, pp. 1093
-
-
Byers, P.K.1
Canty, A.J.2
Skelton, B.W.3
White, A.H.4
-
20
-
-
37049073681
-
-
(m) Byers, P. K.; Canty, A. J.; Skelton, B. W.; White, A. H. J. Chem. Soc., Chem. Commun. 1986, 1722.
-
(1986)
J. Chem. Soc., Chem. Commun
, pp. 1722
-
-
Byers, P.K.1
Canty, A.J.2
Skelton, B.W.3
White, A.H.4
-
21
-
-
25144474992
-
-
Dick, A. R.; Kampf, J. W.; Sanford, M. S. J.Am. Chem. Soc. 2005, 127, 12790.
-
(2005)
J.Am. Chem. Soc
, vol.127
, pp. 12790
-
-
Dick, A.R.1
Kampf, J.W.2
Sanford, M.S.3
-
23
-
-
34547437810
-
-
However, an alternative mechanistic pathway relying on transmetalation between two Pd(II) centers and lacking the involvement of Pd(IV) intermediates in analogous Pd-catalyzed reactions involving aryl halides as hypothetical oxidants for Pd(II) complexes was proposed and supported by computational studies; see: Cardemas. D. J.; Martin-Matute, B.; Echavarren, A. M. J.Am. Chem. Soc. 2006, 128, 5033.
-
(b) However, an alternative mechanistic pathway relying on transmetalation between two Pd(II) centers and lacking the involvement of Pd(IV) intermediates in analogous Pd-catalyzed reactions involving aryl halides as hypothetical oxidants for Pd(II) complexes was proposed and supported by computational studies; see: Cardemas. D. J.; Martin-Matute, B.; Echavarren, A. M. J.Am. Chem. Soc. 2006, 128, 5033.
-
-
-
-
24
-
-
0000998051
-
-
1H NMR) detection of a presumed Pd(IV) complex, see: (a) Canty, A. J.; Hoare, J. L.; Davies, N. W.; Trail, P. R. Organometallics 1998, 17, 2046.
-
1H NMR) detection of a presumed Pd(IV) complex, see: (a) Canty, A. J.; Hoare, J. L.; Davies, N. W.; Trail, P. R. Organometallics 1998, 17, 2046.
-
-
-
-
25
-
-
0001471497
-
-
(b) de Graaf, W.; Boersma, J.; van Koten, G. Organometallics 1990, 9, 1479.
-
(1990)
Organometallics
, vol.9
, pp. 1479
-
-
de Graaf, W.1
Boersma, J.2
van Koten, G.3
-
26
-
-
3142609043
-
-
4 For the method for the preparation of complexes 2 and 3, see: (a) Lu, G.; Malinakova, H. C. J.Org. Chem. 2004, 69, 4701.
-
4 For the method for the preparation of complexes 2 and 3, see: (a) Lu, G.; Malinakova, H. C. J.Org. Chem. 2004, 69, 4701.
-
-
-
-
28
-
-
0000049604
-
-
For examples of relatively rare 7-endo Heck reactions, and a discussion of the competition between 7-endo and 6-exo cyclization pathways in the Heck reactions, see: (a) Rigby, J. H, Hughes, R. C, Heeg, M. J. J.Am. Chem. Soc. 1995, 117, 7834
-
For examples of relatively rare 7-endo Heck reactions, and a discussion of the competition between 7-endo and 6-exo cyclization pathways in the Heck reactions, see: (a) Rigby, J. H.; Hughes, R. C.; Heeg, M. J. J.Am. Chem. Soc. 1995, 117, 7834.
-
-
-
-
30
-
-
84858084005
-
-
13C NMR spectroscopy.
-
13C NMR spectroscopy.
-
-
-
-
31
-
-
84858087538
-
-
13C NMR spectroscopy. Its formation can be rationalized via C-allylation of the palladium ester enolate VII (Figure 2) with the allyl bromide.
-
13C NMR spectroscopy. Its formation can be rationalized via C-allylation of the palladium ester enolate VII (Figure 2) with the allyl bromide.
-
-
-
-
32
-
-
84858087536
-
-
13C NMR spectroscopy. Its formation can be rationalized by -hydride elimination following migratory insertion from intermediate X (Figure 2) occurring with the regiochemistry, giving rise to a benzopyran with an exocyclic double bond, which isomerizes to the more stable structure shown below.
-
13C NMR spectroscopy. Its formation can be rationalized by -hydride elimination following migratory insertion from intermediate X (Figure 2) occurring with the regiochemistry, giving rise to a benzopyran with an exocyclic double bond, which isomerizes to the more stable structure shown below.
-
-
-
-
33
-
-
84858087537
-
-
1H NMR NOE experiments performed on benzopyrans 5a,b detected the following correlations: (i) the methine proton bonded to carbon C2 showed an NOE correlation to a proton on the vinylic carbon directly bonded to C3 (for 5a) or to a terminal proton in the vinyl side chain bonded to carbon C3 (for 5b). However, inspection of the molecular models of different conformations of benzopyrans 5a,b revealed that these correlations could be present in both cis and trans heterocycles.
-
1H NMR NOE experiments performed on benzopyrans 5a,b detected the following correlations: (i) the methine proton bonded to carbon C2 showed an NOE correlation to a proton on the vinylic carbon directly bonded to C3 (for 5a) or to a terminal proton in the vinyl side chain bonded to carbon C3 (for 5b). However, inspection of the molecular models of different conformations of benzopyrans 5a,b revealed that these correlations could be present in both cis and trans heterocycles.
-
-
-
-
34
-
-
21944441002
-
-
Examples of palladation of aromatic rings directed by a heteroatom-containing substituent in the Ortho position are well-known; see: Dupont, J, Consorti, C. S, Spencer, J.Chem. Rev. 2005, 105, 2527
-
Examples of palladation of aromatic rings directed by a heteroatom-containing substituent in the Ortho position are well-known; see: Dupont, J.; Consorti, C. S.; Spencer, J.Chem. Rev. 2005, 105, 2527.
-
-
-
-
35
-
-
84858084778
-
-
13C NMR spectroscopy. Heterocycle 13b may arise via Pd-mediated decarboxylation following the formation of a benzoxepine substituted with the Pd atom at C-3 via readdition of the H-Pd-X complex to the double bond formed via β-hydride elimination. The heterocycle 13c could arise via air oxidation of 13b.
-
13C NMR spectroscopy. Heterocycle 13b may arise via Pd-mediated decarboxylation following the formation of a benzoxepine substituted with the Pd atom at C-3 via readdition of the H-Pd-X complex to the double bond formed via β-hydride elimination. The heterocycle 13c could arise via air oxidation of 13b.
-
-
-
-
36
-
-
84858096456
-
-
1H NMR). Under optimum conditions (8.5 h, 0 °C) the molar ratio 12:3b:11 was 10:2:1.
-
1H NMR). Under optimum conditions (8.5 h, 0 °C) the molar ratio 12:3b:11 was 10:2:1.
-
-
-
-
37
-
-
34547433762
-
-
The assignments of protons in the structure of complex 12 as outlined in Figures 5 and 7 are supported by 2D NMR experiments (COSY, HSQC) recorded on the isolated complex 12. Thus, COSY spectroscopy revealed correlations between (i) signals at 0.76 (t, J, 6.8 Hz, 3 H, CH3, 3.15 (dq, J, 7.2, 3.2 Hz, 1 Hf, and 2.82 ppm (dq, J, 7.2, 2.8 Hz, 1 Hg) and (ii) signals at 7.36 (dt, J, 15.2, 9.0 Hz, 1 H d, 4.22 (t, J, 7.2 Hz, 1 Hb, and 3.85 ppm (ddd, J, 15.6, 10.0, 6.8 Hz, 1 Hc, HSQC spectroscopy revealed correlations between (i) signals at 3.15 (Hf) and 2.82 ppm (Hg) and a single carbon at 59.8 ppm and (ii) signals at 4.22 (Hb) and 3.85 ppm (H c) and a single carbon at 38.1 ppm
-
c) and a single carbon at 38.1 ppm.
-
-
-
-
38
-
-
84858087534
-
-
Although repeated attempts to grow larger high-quality single crystals of 12 were unsuccessful, the acquired small, 0.12-0.19) × (0.08-0.010) × 0.03 mm3) single-domain crystals obtained for the two different solvent polymorphs gave acceptable yields of data to 2θMo Kα, 45.0°. Even though the lower yield of data for both polymorphs necessarily reduces the precision of the resulting structural parameters, all three molecules have the same Pd stereochemistry and consistent Pd-ligand bond lengths
-
3) single-domain crystals obtained for the two different solvent polymorphs gave acceptable yields of data to 2θ(Mo Kα) = 45.0°. Even though the lower yield of data for both polymorphs necessarily reduces the precision of the resulting structural parameters, all three molecules have the same Pd stereochemistry and consistent Pd-ligand bond lengths.
-
-
-
-
39
-
-
84858087532
-
-
3) = 2.043 Å, Pd-N(1,2) = 2.114, 2.126 Å.
-
3) = 2.043 Å, Pd-N(1,2) = 2.114, 2.126 Å.
-
-
-
-
40
-
-
34547473704
-
-
The half-life is approximately 3 h
-
The half-life is approximately 3 h.
-
-
-
|